These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 32143794)

  • 41. Development of hybrid feature learner model integrating FDOSM for golden subject identification in motor imagery.
    Al-Qaysi ZT; Albahri AS; Ahmed MA; Mohammed SM
    Phys Eng Sci Med; 2023 Dec; 46(4):1519-1534. PubMed ID: 37603133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multiwavelet-based sparse time-varying autoregressive modeling for motor imagery EEG classification.
    Liu Z; Wang L; Xu S; Lu K
    Comput Biol Med; 2023 Mar; 155():106196. PubMed ID: 36842221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensor Discriminant Analysis for MI-EEG Signal Classification Using Convolutional Neural Network.
    Huang S; Peng H; Chen Y; Sun K; Shen F; Wang T; Ma T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5971-5974. PubMed ID: 31947207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems.
    Aghaei AS; Mahanta MS; Plataniotis KN
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):15-29. PubMed ID: 26452197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direction decoding of imagined hand movements using subject-specific features from parietal EEG.
    Sagila GK; Vinod AP
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35901779
    [No Abstract]   [Full Text] [Related]  

  • 47. Multiclass Motor Imagery Recognition of Single Joint in Upper Limb Based on NSGA- II OVO TWSVM.
    Guan S; Zhao K; Wang F
    Comput Intell Neurosci; 2018; 2018():6265108. PubMed ID: 30050566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Motor Imagery Electroencephalogram Feature Selection Algorithm Based on Mutual Information and Principal Component Analysis].
    Xu J; Zuo G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):201-7. PubMed ID: 29708316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition.
    Gurve D; Delisle-Rodriguez D; Romero-Laiseca M; Cardoso V; Loterio F; Bastos T; Krishnan S
    J Neural Eng; 2020 Apr; 17(2):026029. PubMed ID: 31614343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel feature extraction method PSS-CSP for binary motor imagery - based brain-computer interfaces.
    Chen A; Sun D; Gao X; Zhang D
    Comput Biol Med; 2024 Jul; 177():108619. PubMed ID: 38796879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces.
    Zuo C; Jin J; Xu R; Wu L; Liu C; Miao Y; Wang X
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524961
    [No Abstract]   [Full Text] [Related]  

  • 52. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces.
    Wu H; Li S; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():527-536. PubMed ID: 38252572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A review of critical challenges in MI-BCI: From conventional to deep learning methods.
    Khademi Z; Ebrahimi F; Kordy HM
    J Neurosci Methods; 2023 Jan; 383():109736. PubMed ID: 36349568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations.
    Park SA; Hwang HJ; Lim JH; Choi JH; Jung HK; Im CH
    Med Biol Eng Comput; 2013 May; 51(5):571-9. PubMed ID: 23325145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sparse Group Representation Model for Motor Imagery EEG Classification.
    Jiao Y; Zhang Y; Chen X; Yin E; Jin J; Wang X; Cichocki A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):631-641. PubMed ID: 29994055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correlation-based channel selection and regularized feature optimization for MI-based BCI.
    Jin J; Miao Y; Daly I; Zuo C; Hu D; Cichocki A
    Neural Netw; 2019 Oct; 118():262-270. PubMed ID: 31326660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces.
    Sun B; Wu Z; Hu Y; Li T
    Neural Netw; 2022 Jul; 151():111-120. PubMed ID: 35405471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis.
    Fu R; Han M; Tian Y; Shi P
    J Neurosci Methods; 2020 Sep; 343():108833. PubMed ID: 32619588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data.
    Miah MO; Muhammod R; Mamun KAA; Farid DM; Kumar S; Sharma A; Dehzangi A
    J Neurosci Methods; 2021 Dec; 364():109373. PubMed ID: 34606773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.