BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32144109)

  • 1. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of L-tryptophan production strains by defined genetic modification in Escherichia coli.
    Zhao ZJ; Zou C; Zhu YX; Dai J; Chen S; Wu D; Wu J; Chen J
    J Ind Microbiol Biotechnol; 2011 Dec; 38(12):1921-9. PubMed ID: 21541714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose.
    Kuepper J; Dickler J; Biggel M; Behnken S; Jäger G; Wierckx N; Blank LM
    Front Microbiol; 2015; 6():1310. PubMed ID: 26635771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli.
    Gu P; Yang F; Kang J; Wang Q; Qi Q
    Microb Cell Fact; 2012 Mar; 11():30. PubMed ID: 22380540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803.
    Lee TC; Xiong W; Paddock T; Carrieri D; Chang IF; Chiu HF; Ungerer J; Hank Juo SH; Maness PC; Yu J
    Metab Eng; 2015 Jul; 30():179-189. PubMed ID: 26079651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp. PCC 6803].
    Xie J; Zhou J; Zhang H; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):998-1004. PubMed ID: 22016983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2.
    Wang B; Pugh S; Nielsen DR; Zhang W; Meldrum DR
    Metab Eng; 2013 Mar; 16():68-77. PubMed ID: 23333586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism.
    Tzin V; Malitsky S; Zvi MMB; Bedair M; Sumner L; Aharoni A; Galili G
    New Phytol; 2012 Apr; 194(2):430-439. PubMed ID: 22296303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rplKAJL) in cyanobacterium Synechocystis PCC 6803.
    Schmidt J; Bubunenko M; Subramanian AR
    J Biol Chem; 1993 Dec; 268(36):27447-57. PubMed ID: 7505271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel counter-selection method for markerless genetic modification in Synechocystis sp. PCC 6803.
    Cheah YE; Albers SC; Peebles CA
    Biotechnol Prog; 2013; 29(1):23-30. PubMed ID: 23124993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy.
    Wu J; Du G; Zhou J; Chen J
    Metab Eng; 2013 Mar; 16():48-55. PubMed ID: 23246524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of key enzymes in tryptophan biosynthesis pathway in Escherichia coli].
    Yu J; Wang J; Li J; Guo C; Huang Y; Xu Q
    Sheng Wu Gong Cheng Xue Bao; 2008 May; 24(5):844-50. PubMed ID: 18724706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli to enhance phenylalanine production.
    Yakandawala N; Romeo T; Friesen AD; Madhyastha S
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):283-91. PubMed ID: 18080813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].
    Zang C; Zhao Z; Wang Y; Zhang Y; Ding J
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):24-32. PubMed ID: 24783851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression.
    Lütke-Eversloh T; Stephanopoulos G
    Metab Eng; 2008 Mar; 10(2):69-77. PubMed ID: 18243023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803.
    Valverde F; Losada M; Serrano A
    J Bacteriol; 1997 Jul; 179(14):4513-22. PubMed ID: 9226260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.