These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32144289)

  • 1. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers.
    Liu W; Wang X; Liu X; Yu C; Fang M; Ye W
    Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes.
    Ikegawa T; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Rayleigh-Taylor instability under interface discontinuous acceleration induced by radiation.
    Hu ZX; Zhang YS; Tian BL
    Phys Rev E; 2020 Apr; 101(4-1):043115. PubMed ID: 32422729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of collisions with a second fluid on the temporal development of nonlinear, single-mode, Rayleigh-Taylor instability.
    Cauvet Q; Bernecker B; Bouquet S; Canaud B; Hermeline F; Pichon S
    Phys Rev E; 2022 Jun; 105(6-2):065205. PubMed ID: 35854511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension.
    Garnier J; Cherfils-Clérouin C; Holstein PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids.
    Tao JJ; He XT; Ye WH; Busse FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013001. PubMed ID: 23410420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended computation of the viscous Rayleigh-Taylor instability in a horizontally confined flow.
    Martinez-Carrascal J; Calderon-Sanchez J; González-Gutiérrez LM; de Andrea González A
    Phys Rev E; 2021 May; 103(5-1):053114. PubMed ID: 34134218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation.
    Dong M; Fan Z; Yu C
    Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid.
    White J; Oakley J; Anderson M; Bonazza R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026303. PubMed ID: 20365647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.
    Han L; Yuan J; Dong M; Fan Z
    Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.