BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32144307)

  • 1. Selective Binding of HSC70 and its Co-Chaperones to Structural Hotspots on CFTR.
    Baaklini I; Gonçalves CC; Lukacs GL; Young JC
    Sci Rep; 2020 Mar; 10(1):4176. PubMed ID: 32144307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp70 and DNAJA2 limit CFTR levels through degradation.
    Kim Chiaw P; Hantouche C; Wong MJH; Matthes E; Robert R; Hanrahan JW; Shrier A; Young JC
    PLoS One; 2019; 14(8):e0220984. PubMed ID: 31408507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation.
    Schmidt BZ; Watts RJ; Aridor M; Frizzell RA
    J Biol Chem; 2009 Feb; 284(7):4168-78. PubMed ID: 19098309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508.
    Grove DE; Fan CY; Ren HY; Cyr DM
    Mol Biol Cell; 2011 Feb; 22(3):301-14. PubMed ID: 21148293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase.
    Matsumura Y; Sakai J; Skach WR
    J Biol Chem; 2013 Oct; 288(43):31069-79. PubMed ID: 23990462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell.
    Bagdany M; Veit G; Fukuda R; Avramescu RG; Okiyoneda T; Baaklini I; Singh J; Sovak G; Xu H; Apaja PM; Sattin S; Beitel LK; Roldan A; Colombo G; Balch W; Young JC; Lukacs GL
    Nat Commun; 2017 Aug; 8(1):398. PubMed ID: 28855508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis.
    Meacham GC; Lu Z; King S; Sorscher E; Tousson A; Cyr DM
    EMBO J; 1999 Mar; 18(6):1492-505. PubMed ID: 10075921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator.
    Younger JM; Chen L; Ren HY; Rosser MF; Turnbull EL; Fan CY; Patterson C; Cyr DM
    Cell; 2006 Aug; 126(3):571-82. PubMed ID: 16901789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator.
    Cho HJ; Gee HY; Baek KH; Ko SK; Park JM; Lee H; Kim ND; Lee MG; Shin I
    J Am Chem Soc; 2011 Dec; 133(50):20267-76. PubMed ID: 22074182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrine modulates HSC70 levels and rescues ΔF508-CFTR.
    Basile A; Pascale M; Franceschelli S; Nieddu E; Mazzei MT; Fossa P; Turco MC; Mazzei M
    J Cell Physiol; 2012 Sep; 227(9):3317-23. PubMed ID: 22170045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins.
    Sopha P; Kadokura H; Yamamoto YH; Takeuchi M; Saito M; Tsuru A; Kohno K
    Cell Struct Funct; 2012; 37(2):177-87. PubMed ID: 23018488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery.
    Oberdorf J; Pitonzo D; Skach WR
    J Biol Chem; 2005 Nov; 280(46):38193-202. PubMed ID: 16166089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC; Patterson C; Zhang W; Younger JM; Cyr DM
    Nat Cell Biol; 2001 Jan; 3(1):100-5. PubMed ID: 11146634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation.
    Matsumura Y; David LL; Skach WR
    Mol Biol Cell; 2011 Aug; 22(16):2797-809. PubMed ID: 21697503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy.
    He L; Kennedy AS; Houck S; Aleksandrov A; Quinney NL; Cyr-Scully A; Cholon DM; Gentzsch M; Randell SH; Ren HY; Cyr DM
    Mol Biol Cell; 2021 Apr; 32(7):538-553. PubMed ID: 33534640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.
    Yamamoto YH; Kimura T; Momohara S; Takeuchi M; Tani T; Kimata Y; Kadokura H; Kohno K
    Cell Struct Funct; 2010; 35(2):107-16. PubMed ID: 21150129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding.
    Baaklini I; Wong MJ; Hantouche C; Patel Y; Shrier A; Young JC
    J Biol Chem; 2012 Dec; 287(50):41939-54. PubMed ID: 23091061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.