These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32144670)

  • 1. Site-Directed Modification of Yeast-Produced Proteins Using Expressed Protein Ligation.
    Umlauf BJ; Shusta EV
    Methods Mol Biol; 2020; 2133():221-233. PubMed ID: 32144670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile chemical functionalization of proteins through intein-linked yeast display.
    Marshall CJ; Agarwal N; Kalia J; Grosskopf VA; McGrath NA; Abbott NL; Raines RT; Shusta EV
    Bioconjug Chem; 2013 Sep; 24(9):1634-44. PubMed ID: 23924245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolved Mxe GyrA intein for enhanced production of fusion proteins.
    Marshall CJ; Grosskopf VA; Moehling TJ; Tillotson BJ; Wiepz GJ; Abbott NL; Raines RT; Shusta EV
    ACS Chem Biol; 2015 Feb; 10(2):527-38. PubMed ID: 25384269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient and simple method to increase the level of displayed protein on the yeast cell surface.
    Zhao JZ; Xu LM; Liu M; Cao YS; LaPatra SE; Yin JS; Liu HB; Lu TY
    J Microbiol Methods; 2017 Apr; 135():41-47. PubMed ID: 28188810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convenient method of producing cyclic single-chain Fv antibodies by split-intein-mediated protein ligation and chaperone co-expression.
    Liu C; Kobashigawa Y; Yamauchi S; Fukuda N; Sato T; Masuda T; Ohtsuki S; Morioka H
    J Biochem; 2020 Sep; 168(3):257-263. PubMed ID: 32275752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split-inteins and their bioapplications.
    Li Y
    Biotechnol Lett; 2015 Nov; 37(11):2121-37. PubMed ID: 26153348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cassette Approach for the Identification of Intein Insertion Sites.
    Sonntag T
    Methods Mol Biol; 2017; 1495():239-258. PubMed ID: 27714621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and Applications of Expressed Protein Ligation.
    Wang ZA; Cole PA
    Methods Mol Biol; 2020; 2133():1-13. PubMed ID: 32144660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Yeast Surface Display for Protein Engineering.
    Cherf GM; Cochran JR
    Methods Mol Biol; 2015; 1319():155-75. PubMed ID: 26060074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein derivitization-expressed protein ligation.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 536():95-108. PubMed ID: 24423270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine.
    Hashad RA; Lange JL; Tan NCW; Alt K; Hagemeyer CE
    Methods Mol Biol; 2019; 2033():67-80. PubMed ID: 31332748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing.
    Sonntag T; Mootz HD
    Mol Biosyst; 2011 Jun; 7(6):2031-9. PubMed ID: 21487580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expressed protein ligation using an N-terminal cysteine containing fragment generated in vivo from a pelB fusion protein.
    Hauser PS; Ryan RO
    Protein Expr Purif; 2007 Aug; 54(2):227-33. PubMed ID: 17493830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific modification of ED-B-targeting antibody using intein-fusion technology.
    Möhlmann S; Bringmann P; Greven S; Harrenga A
    BMC Biotechnol; 2011 Jul; 11():76. PubMed ID: 21777442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical-tag labeling of proteins using fully recombinant split inteins.
    Bachmann AL; Matern JC; Schütz V; Mootz HD
    Methods Mol Biol; 2015; 1266():145-59. PubMed ID: 25560073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and application of a N-1' fluorescent biotinyl derivative inducing the specific carboxy-terminal dual labeling of a novel RhoB-selective scFv.
    Chaisemartin L; Chinestra P; Favre G; Blonski C; Faye JC
    Bioconjug Chem; 2009 May; 20(5):847-55. PubMed ID: 19348471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semisynthesis of proteins using split inteins.
    Ludwig C; Schwarzer D; Zettler J; Garbe D; Janning P; Czeslik C; Mootz HD
    Methods Enzymol; 2009; 462():77-96. PubMed ID: 19632470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein ligation: an enabling technology for the biophysical analysis of proteins.
    Muralidharan V; Muir TW
    Nat Methods; 2006 Jun; 3(6):429-38. PubMed ID: 16721376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal chemical protein labeling using the naturally split GOS-TerL intein.
    Bachmann AL; Mootz HD
    J Pept Sci; 2017 Jul; 23(7-8):624-630. PubMed ID: 28332258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.