These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32144781)
1. Characterizing local dose perturbations due to gas cavities in magnetic resonance-guided radiotherapy. Shortall J; Vasquez Osorio E; Chuter R; Green A; McWilliam A; Kirkby K; Mackay R; van Herk M Med Phys; 2020 Jun; 47(6):2484-2494. PubMed ID: 32144781 [TBL] [Abstract][Full Text] [Related]
2. Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations. Shortall J; Vasquez Osorio E; Chuter R; McWilliam A; Choudhury A; Kirkby K; Mackay R; van Herk M Med Phys; 2019 Dec; 46(12):5807-5815. PubMed ID: 31600837 [TBL] [Abstract][Full Text] [Related]
3. Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Shortall J; Vasquez Osorio E; Aitkenhead A; Berresford J; Agnew J; Budgell G; Chuter R; McWilliam A; Kirkby K; Mackay R; van Herk M Med Phys; 2020 Jun; 47(6):2506-2515. PubMed ID: 32145087 [TBL] [Abstract][Full Text] [Related]
4. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. Uilkema S; van der Heide U; Sonke JJ; Moreau M; van Triest B; Nijkamp J Med Phys; 2015 Dec; 42(12):7182-9. PubMed ID: 26632072 [TBL] [Abstract][Full Text] [Related]
5. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields. Bol GH; Lagendijk JJ; Raaymakers BW Phys Med Biol; 2015 Jan; 60(2):755-68. PubMed ID: 25559321 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. Shao W; Tang X; Bai Y; Shu D; Geng C; Gong C; Guan F J Cancer Res Ther; 2018 Jan; 14(1):184-195. PubMed ID: 29516984 [TBL] [Abstract][Full Text] [Related]
7. Real-time motion-including dose estimation of simulated multi-leaf collimator-tracked magnetic resonance-guided radiotherapy. Persson E; Goodwin E; Eiben B; Wetscherek A; Nill S; Oelfke U Med Phys; 2024 Mar; 51(3):2221-2229. PubMed ID: 37898109 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator. Khan AU; Simiele EA; Lotey R; DeWerd LA; Yadav P Med Phys; 2021 Apr; 48(4):1967-1982. PubMed ID: 33555052 [TBL] [Abstract][Full Text] [Related]
9. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Raaijmakers AJ; Raaymakers BW; Lagendijk JJ Phys Med Biol; 2008 Feb; 53(4):909-23. PubMed ID: 18263948 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo optimization and experimental validation of a prototype ionization chamber for accurate magnetic resonance image guided radiation therapy (MRgRT) daily output constancy measurements in solid phantoms. Muir BR; Nusrat H; Sarfehnia A; Renaud J Med Phys; 2022 Aug; 49(8):5483-5490. PubMed ID: 35536047 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck. Wang L; Yorke E; Chui CS Int J Radiat Oncol Biol Phys; 2001 Aug; 50(5):1339-49. PubMed ID: 11483347 [TBL] [Abstract][Full Text] [Related]
12. Optical imaging method to quantify spatial dose variation due to the electron return effect in an MR-linac. Andreozzi JM; Brůža P; Cammin J; Pogue BW; Gladstone DJ; Green O Med Phys; 2020 Mar; 47(3):1258-1267. PubMed ID: 31821573 [TBL] [Abstract][Full Text] [Related]
13. Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy. Pham J; Cao M; Yoon SM; Gao Y; Kishan AU; Yang Y J Clin Med; 2022 Jan; 11(2):. PubMed ID: 35054061 [TBL] [Abstract][Full Text] [Related]
14. Medical physics challenges in clinical MR-guided radiotherapy. Kurz C; Buizza G; Landry G; Kamp F; Rabe M; Paganelli C; Baroni G; Reiner M; Keall PJ; van den Berg CAT; Riboldi M Radiat Oncol; 2020 May; 15(1):93. PubMed ID: 32370788 [TBL] [Abstract][Full Text] [Related]
15. EPR imaging of magnetic field effects on radiation dose distributions around millimeter-size air cavities. Höfel S; Fix MK; Zwicker F; Sterpin E; Drescher M Phys Med Biol; 2019 Sep; 64(17):175013. PubMed ID: 31307018 [TBL] [Abstract][Full Text] [Related]
17. Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE Costa F; Doran SJ; Hanson IM; Nill S; Billas I; Shipley D; Duane S; Adamovics J; Oelfke U Phys Med Biol; 2018 Feb; 63(5):05NT01. PubMed ID: 29393066 [TBL] [Abstract][Full Text] [Related]
18. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Raaijmakers AJ; Raaymakers BW; Lagendijk JJ Phys Med Biol; 2005 Apr; 50(7):1363-76. PubMed ID: 15798329 [TBL] [Abstract][Full Text] [Related]
19. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Raaijmakers AJ; Raaymakers BW; van der Meer S; Lagendijk JJ Phys Med Biol; 2007 Feb; 52(4):929-39. PubMed ID: 17264362 [TBL] [Abstract][Full Text] [Related]
20. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. Shortall J; Vasquez Osorio E; Cree A; Song Y; Dubec M; Chuter R; Price G; McWilliam A; Kirkby K; Mackay R; van Herk M Med Phys; 2021 Jan; 48(1):414-426. PubMed ID: 33164217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]