BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 321448)

  • 1. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons.
    Buttlaire DH; Chon M
    J Biol Chem; 1977 Mar; 252(6):1957-64. PubMed ID: 321448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli succinyl coenzyme A synthetase. Inhibition of ATP-stimulated succinate----succinyl coenzyme A exchange at low succinyl coenzyme A concentrations by an ADP trap.
    Nishimura JS; Mitchell T
    J Biol Chem; 1984 Feb; 259(4):2144-8. PubMed ID: 6365903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance relaxation time studies on the manganese(II) ion complex with succinyl coenzyme A synthetase from Escherichia coli.
    Lam YF; Bridger WA; Kotowycz G
    Biochemistry; 1976 Oct; 15(21):4742-8. PubMed ID: 788782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site.
    Buttlaire DH; Reed GH; Himes R
    J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu.
    Wilson GE; Cohn M
    J Biol Chem; 1977 Mar; 252(6):2004-9. PubMed ID: 191448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and water proton relaxation rate enhancement properties of formyltetrahydrofolate synthetase-manganous ion-substrate complexes.
    Buttlaire DH; Reed GH; Himes RH
    J Biol Chem; 1975 Jan; 250(1):254-60. PubMed ID: 166988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of a step of the overall reaction by the alpha subunit of Escherichia coli succinyl coenzyme A synthetase.
    Pearson PH; Bridger WA
    J Biol Chem; 1975 Nov; 250(21):8524-9. PubMed ID: 1104606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An n.m.r. probe of succinyl-coenzyme A synthetase: subunit interactions and the mechanism of action.
    Vogel HJ; Bridger WA
    Biochem Soc Trans; 1983 Jun; 11(3):315-23. PubMed ID: 6347742
    [No Abstract]   [Full Text] [Related]  

  • 11. A phosphorus 31 nuclear magnetic resonance study of the intermediates of the Escherichia coli succinyl coenzyme A synthetase reaction. Evidence for substrate synergism and catalytic cooperativity.
    Vogel HJ; Bridger WA
    J Biol Chem; 1982 May; 257(9):4834-42. PubMed ID: 7040388
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel mechanisms of Escherichia coli succinyl-coenzyme A synthetase regulation.
    Birney M; Um HD; Klein C
    J Bacteriol; 1996 May; 178(10):2883-9. PubMed ID: 8631677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the binding of succinate to succinyl-CoA synthetase.
    Huang J; Fraser ME
    Acta Crystallogr D Struct Biol; 2016 Aug; 72(Pt 8):912-21. PubMed ID: 27487822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity labeling of succinyl-CoA synthetase from Escherichia coli by the 2',3'-dialdehyde derivative of adenosine 5'-diphosphate.
    Nishimura JS; Mitchell T; Collier GE; Matula JM; Ball DJ
    Eur J Biochem; 1983 Oct; 136(1):83-7. PubMed ID: 6352264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of equilibrium complexes of myoxin subfragment 1 with the manganous ion and adenosine diphosphate using magnetic resonance techniques.
    Bagshow CR; Reed GH
    J Biol Chem; 1976 Apr; 251(7):1975-83. PubMed ID: 178650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine 5'-O-(3-thio)triphosphate, a substrate and potent inhibitor of Escherichia coli succinyl-CoA synthetase. Additional evidence for a cooperative alternating-sites mechanism.
    Nishimura JS; Mitchell T
    J Biol Chem; 1984 Aug; 259(15):9642-5. PubMed ID: 6378911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance and kinetic studies of pyruvate, phosphate dikinase. Interaction of oxalate with the phosphorylated form of the enzyme.
    Michaels G; Milner Y; Reed GH
    Biochemistry; 1975 Jul; 14(14):3213-9. PubMed ID: 167819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance studies on manganese-nucleotide complexes of phosphoglycerate kinase.
    Chapman BE; O'Sullivan WJ; Scopes RK; Reed GH
    Biochemistry; 1977 Mar; 16(5):1005-10. PubMed ID: 321006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.