These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32144834)

  • 1. Human Error in Autonomous Underwater Vehicle Deployment: A System Dynamics Approach.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2020 Jun; 40(6):1258-1278. PubMed ID: 32144834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy System Dynamics Risk Analysis (FuSDRA) of Autonomous Underwater Vehicle Operations in the Antarctic.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2020 Apr; 40(4):818-841. PubMed ID: 31799748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fuzzy-Based Risk Assessment Framework for Autonomous Underwater Vehicle Under-Ice Missions.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2019 Dec; 39(12):2744-2765. PubMed ID: 31318487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk analysis for autonomous underwater vehicle operations in extreme environments.
    Brito MP; Griffiths G; Challenor P
    Risk Anal; 2010 Dec; 30(12):1771-88. PubMed ID: 20731790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous gliders reveal features of the water column associated with foraging by adelie penguins.
    Kahl LA; Schofield O; Fraser WR
    Integr Comp Biol; 2010 Dec; 50(6):1041-50. PubMed ID: 21558258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.
    Liu S; Xu H; Lin Y; Gao L
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observability analysis of DVL/PS aided INS for a maneuvering AUV.
    Klein I; Diamant R
    Sensors (Basel); 2015 Oct; 15(10):26818-37. PubMed ID: 26506356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
    Cao X; Zhu D; Yang SX
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2364-2374. PubMed ID: 26485725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.
    Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs).
    Yao F; Yang C; Liu X; Zhang M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lagrange tracking-based long-term drift trajectory prediction method for Autonomous Underwater Vehicle.
    Zheng S; Zhang M; Zhang J; Li J
    Math Biosci Eng; 2023 Nov; 20(12):21075-21097. PubMed ID: 38124588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention-Based Meta-Reinforcement Learning for Tracking Control of AUV With Time-Varying Dynamics.
    Jiang P; Song S; Huang G
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6388-6401. PubMed ID: 34029197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fisher-Information-Matrix-Based USBL Cooperative Location in USV-AUV Networks.
    Wang Z; Xu J; Feng Y; Wang Y; Xie G; Hou X; Men W; Ren Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Improved DSA-Based Approach for Multi-AUV Cooperative Search.
    Ni J; Yang L; Shi P; Luo C
    Comput Intell Neurosci; 2018; 2018():2186574. PubMed ID: 30627140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater Robotics Competitions: The European Robotics League Emergency Robots Experience With FeelHippo AUV.
    Franchi M; Fanelli F; Bianchi M; Ridolfi A; Allotta B
    Front Robot AI; 2020; 7():3. PubMed ID: 33501172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.
    Ni J; Wu L; Shi P; Yang SX
    Comput Intell Neurosci; 2017; 2017():9269742. PubMed ID: 28255297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Integration Schemes and Maneuvers on the Initial Alignment and Calibration of AUVs: Observability and Degree of Observability Analyses.
    Frutuoso A; Silva FO; de Barros EA
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Asynchronous Federated Learning for AUV Swarm.
    Meng Z; Li Z; Hou X; Du J; Chen J; Wei W
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.