These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 32145399)
1. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Xiong Q; Liu YS; Hu LX; Shi ZQ; Cai WW; He LY; Ying GG Water Res; 2020 May; 175():115656. PubMed ID: 32145399 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Peng FQ; Ying GG; Yang B; Liu S; Lai HJ; Liu YS; Chen ZF; Zhou GJ Chemosphere; 2014 Jan; 95():581-8. PubMed ID: 24182402 [TBL] [Abstract][Full Text] [Related]
3. Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa. Gao F; Yang L; Chen AJ; Zhou WH; Chen DZ; Chen JM Bioresour Technol; 2022 May; 351():126900. PubMed ID: 35217156 [TBL] [Abstract][Full Text] [Related]
4. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Xiong JQ; Kim SJ; Kurade MB; Govindwar S; Abou-Shanab RAI; Kim JR; Roh HS; Khan MA; Jeon BH J Hazard Mater; 2019 May; 370():138-146. PubMed ID: 30049519 [TBL] [Abstract][Full Text] [Related]
5. Keystone microalgae species determine the removal efficiency of sulfamethoxazole: a case study of Huang R; Liu W; Su J; Li S; Wang L; Jeppesen E; Zhang W Front Plant Sci; 2023; 14():1193668. PubMed ID: 37476166 [TBL] [Abstract][Full Text] [Related]
6. Microalgae enhanced co-metabolism of sulfamethoxazole using aquacultural feedstuff components: Co-metabolic pathways and enzymatic mechanisms. Wang P; Li D; Sun M; Yin J; Zheng T J Hazard Mater; 2024 May; 470():134279. PubMed ID: 38613960 [TBL] [Abstract][Full Text] [Related]
7. Removal and metabolism of triclosan by three different microalgal species in aquatic environment. Wang S; Poon K; Cai Z J Hazard Mater; 2018 Jan; 342():643-650. PubMed ID: 28898861 [TBL] [Abstract][Full Text] [Related]
8. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Yang W; Gao X; Wu Y; Wan L; Lu C; Huang J; Chen H; Yang Y; Ding H; Zhang W Environ Toxicol Pharmacol; 2021 Jan; 81():103517. PubMed ID: 33080356 [TBL] [Abstract][Full Text] [Related]
9. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Wu H; Miao X Bioresour Technol; 2014 Oct; 170():421-427. PubMed ID: 25164333 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). Abinandan S; Bhattacharya R; Shanthakumar S Int J Phytoremediation; 2015; 17(1-6):377-81. PubMed ID: 25409251 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Xiong JQ; Govindwar S; Kurade MB; Paeng KJ; Roh HS; Khan MA; Jeon BH Chemosphere; 2019 Mar; 218():551-558. PubMed ID: 30500716 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms. Chu Y; Zhang C; Wang R; Chen X; Ren N; Ho SH Water Res; 2022 Aug; 221():118834. PubMed ID: 35839594 [TBL] [Abstract][Full Text] [Related]
13. Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. P S C; Sanyal D; Dasgupta S; Banik A Chemosphere; 2021 Apr; 269():128755. PubMed ID: 33143896 [TBL] [Abstract][Full Text] [Related]
14. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. Zhou Y; Yue Y; Chen X; Wu F; Li W; Li P; Han J Sci Total Environ; 2024 Mar; 917():170460. PubMed ID: 38286284 [TBL] [Abstract][Full Text] [Related]
15. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Zhou GJ; Peng FQ; Zhang LJ; Ying GG Environ Sci Pollut Res Int; 2011 Aug; 19(7):2918-29. PubMed ID: 22327643 [TBL] [Abstract][Full Text] [Related]
16. Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways. Zhang Y; Wan J; Li Z; Wu Z; Dang C; Fu J Bioresour Technol; 2022 Mar; 347():126461. PubMed ID: 34863845 [TBL] [Abstract][Full Text] [Related]
17. Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. Purushanahalli Shivagangaiah C; Sanyal D; Dasgupta S; Banik A Physiol Plant; 2021 Sep; 173(1):246-258. PubMed ID: 33583021 [TBL] [Abstract][Full Text] [Related]
18. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. Kiki C; Rashid A; Wang Y; Li Y; Zeng Q; Yu CP; Sun Q J Hazard Mater; 2020 Apr; 387():121985. PubMed ID: 31911384 [TBL] [Abstract][Full Text] [Related]
19. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Tang D; Han W; Li P; Miao X; Zhong J Bioresour Technol; 2011 Feb; 102(3):3071-6. PubMed ID: 21041075 [TBL] [Abstract][Full Text] [Related]
20. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa. Song W; Fu C; Fang Y; Wang Z; Li J; Zhang X; Bhatt K; Liu L; Wang N; Liu F; Zhu S Environ Pollut; 2023 Feb; 318():120925. PubMed ID: 36566677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]