These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32145522)

  • 1. Haptic vs sensorimotor training in the treatment of upper limb dysfunction in multiple sclerosis: A multi-center, randomised controlled trial.
    Solaro C; Cattaneo D; Basteris A; Carpinella I; De Luca A; Mueller M; Bertoni R; Ferrarin M; Sanguineti V
    J Neurol Sci; 2020 May; 412():116743. PubMed ID: 32145522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in Multiple Sclerosis.
    Basteris A; De Luca A; Sanguineti V; Solaro C; Mueller M; Carpinella I; Cattaneo D; Bertoni R; Ferrarin M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975509. PubMed ID: 22275705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS.
    Feys P; Coninx K; Kerkhofs L; De Weyer T; Truyens V; Maris A; Lamers I
    J Neuroeng Rehabil; 2015 Jul; 12():60. PubMed ID: 26202325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study.
    Gijbels D; Lamers I; Kerkhofs L; Alders G; Knippenberg E; Feys P
    J Neuroeng Rehabil; 2011 Jan; 8():5. PubMed ID: 21261965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke.
    Ranzani R; Lambercy O; Metzger JC; Califfi A; Regazzi S; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2020 Aug; 17(1):115. PubMed ID: 32831097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic-based ACTive somatoSENSory (Act.Sens) retraining on upper limb functions with chronic stroke survivors: study protocol for a pilot randomised controlled trial.
    Sidarta A; Lim YC; Kuah CWK; Loh YJ; Ang WT
    Pilot Feasibility Stud; 2021 Nov; 7(1):207. PubMed ID: 34782024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis.
    Bonzano L; Pedullà L; Tacchino A; Brichetto G; Battaglia MA; Mancardi GL; Bove M
    Neuroscience; 2019 Jul; 410():150-159. PubMed ID: 31085282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of robot-mediated adaptive I-TRAVLE training on impaired upper limb function in chronic stroke and multiple sclerosis.
    Maris A; Coninx K; Seelen H; Truyens V; De Weyer T; Geers R; Lemmens M; Coolen J; Stupar S; Lamers I; Feys P
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):1-9. PubMed ID: 28125300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
    Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M;
    Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a telerehabilitation virtual reality intervention on functional upper limb activities in people with multiple sclerosis: a study protocol for the TEAMS pilot randomized controlled trial.
    Kalron A; Achiron A; Pau M; Cocco E
    Trials; 2020 Aug; 21(1):713. PubMed ID: 32787896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the feasibility of a mild and short 4-week combined upper limb and breathing exercise program as a possible home base program to decrease fatigue and improve quality of life in ambulatory and non-ambulatory multiple sclerosis individuals.
    Grubić Kezele T; Babić M; Štimac D
    Neurol Sci; 2019 Apr; 40(4):733-743. PubMed ID: 30659416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraint-Induced Movement Therapy in multiple sclerosis: Safety and three-dimensional kinematic analysis of upper limb activity. A randomized single-blind pilot study.
    de Sire A; Bigoni M; Priano L; Baudo S; Solaro C; Mauro A
    NeuroRehabilitation; 2019; 45(2):247-254. PubMed ID: 31498137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
    Bonzano L; Tacchino A; Brichetto G; Roccatagliata L; Dessypris A; Feraco P; Lopes De Carvalho ML; Battaglia MA; Mancardi GL; Bove M
    Neuroimage; 2014 Apr; 90():107-16. PubMed ID: 24370819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor-based technology for upper limb rehabilitation in patients with multiple sclerosis: A randomized controlled trial.
    Tramontano M; Morone G; De Angelis S; Casagrande Conti L; Galeoto G; Grasso MG
    Restor Neurol Neurosci; 2020; 38(4):333-341. PubMed ID: 32925119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of video-based exergaming on arm and cognitive function in persons with multiple sclerosis: A randomized controlled trial.
    Ozdogar AT; Ertekin O; Kahraman T; Yigit P; Ozakbas S
    Mult Scler Relat Disord; 2020 May; 40():101966. PubMed ID: 32045868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy.
    Fluet GG; Qiu Q; Kelly D; Parikh HD; Ramirez D; Saleh S; Adamovich SV
    Dev Neurorehabil; 2010; 13(5):335-45. PubMed ID: 20828330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-Assisted Reach Training With an Active Assistant Protocol for Long-Term Upper Extremity Impairment Poststroke: A Randomized Controlled Trial.
    Cho KH; Song WK
    Arch Phys Med Rehabil; 2019 Feb; 100(2):213-219. PubMed ID: 30686326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.