These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32145617)

  • 1. Combining weed efficacy, economics and environmental considerations for improved herbicide management in the Great Barrier Reef catchment area.
    Fillols E; Davis AM; Lewis SE; Ward A
    Sci Total Environ; 2020 Jun; 720():137481. PubMed ID: 32145617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area.
    Davis AM; Lewis SE; Brodie JE; Benson A
    Sci Total Environ; 2014 Aug; 490():81-92. PubMed ID: 24840283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sugarcane cropping systems on herbicide losses in surface runoff.
    Nachimuthu G; Halpin NV; Bell MJ
    Sci Total Environ; 2016 Jul; 557-558():773-84. PubMed ID: 27046141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparison of runoff of residual and knockdown herbicides in sugarcane using a rainfall simulator finds large difference in runoff losses and toxicity relative to diuron.
    Silburn DM; Fillols E; Rojas-Ponce S; Lewis S; McHugh AD
    Sci Total Environ; 2023 Mar; 863():160976. PubMed ID: 36535468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.
    Davis AM; Pradolin J
    J Agric Food Chem; 2016 May; 64(20):4021-8. PubMed ID: 26795709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Banded applications are highly effective in minimising herbicide migration from furrow-irrigated sugar cane.
    Oliver DP; Anderson JS; Davis A; Lewis S; Brodie J; Kookana R
    Sci Total Environ; 2014 Jan; 466-467():841-8. PubMed ID: 23973548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.
    Brookes G
    GM Crops Food; 2014; 5(4):321-32. PubMed ID: 25523177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement of simazine in runoff water and weed control from citrus orchard as affected by reduced rate of herbicide application.
    Liu F; O'Connell N
    Bioresour Technol; 2003 Feb; 86(3):253-8. PubMed ID: 12688468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of herbicide transport and partitioning under event flow conditions in the lower Burdekin region, Australia.
    Davis AM; Lewis SE; Bainbridge ZT; Glendenning L; Turner RD; Brodie JE
    Mar Pollut Bull; 2012; 65(4-9):182-93. PubMed ID: 21937063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spot Spraying Reduces Herbicide Concentrations in Runoff.
    Melland AR; Silburn DM; McHugh AD; Fillols E; Rojas-Ponce S; Baillie C; Lewis S
    J Agric Food Chem; 2016 May; 64(20):4009-20. PubMed ID: 26479195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of Herbicide Mixtures to Tropical Freshwater Microalgae Using a Multispecies Test.
    Stone S; Adams MS; Stauber JL; Jolley DF; Warne MSJ
    Environ Toxicol Chem; 2021 Feb; 40(2):473-486. PubMed ID: 33201550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather.
    Landau CA; Hager AG; Tranel PJ; Davis AS; Martin NF; Williams MM
    Pest Manag Sci; 2021 Jun; 77(6):2683-2689. PubMed ID: 33512060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Washoff of Residual Photosystem II Herbicides from Sugar Cane Trash under a Rainfall Simulator.
    Dang A; Silburn M; Craig I; Shaw M; Foley J
    J Agric Food Chem; 2016 May; 64(20):3967-74. PubMed ID: 26964670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity thresholds for ametryn, diuron, hexazinone and simazine in fresh and marine waters.
    Warne MSJ; King O; Smith RA
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3151-3169. PubMed ID: 29332279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.
    Walsh MJ; Powles SB
    Pest Manag Sci; 2014 Sep; 70(9):1324-8. PubMed ID: 24318955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herbicide-resistant weed management: focus on glyphosate.
    Beckie HJ
    Pest Manag Sci; 2011 Sep; 67(9):1037-48. PubMed ID: 21548004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotations and mixtures of soil-applied herbicides delay resistance.
    Busi R; Powles SB; Beckie HJ; Renton M
    Pest Manag Sci; 2020 Feb; 76(2):487-496. PubMed ID: 31251459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbicidal weed management practices: History and future prospects of nanotechnology in an eco-friendly crop production system.
    Paul SK; Mazumder S; Naidu R
    Heliyon; 2024 Mar; 10(5):e26527. PubMed ID: 38444464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tebuthiuron Movement via Leaching and Runoff from Grazed Vertisol and Alfisol Soils in the Brigalow Belt Bioregion of Central Queensland, Australia.
    Thornton CM; Elledge AE
    J Agric Food Chem; 2016 May; 64(20):3949-59. PubMed ID: 26881916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: A case study of diuron, hexazinone, and sulfometuron-methyl in Brazil.
    Silva TS; de Freitas Souza M; Maria da Silva TeĆ³filo T; Silva Dos Santos M; Formiga Porto MA; Martins Souza CM; Barbosa Dos Santos J; Silva DV
    Chemosphere; 2019 Dec; 236():124333. PubMed ID: 31319303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.