These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32145951)

  • 21. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.
    Watanabe-Nakayama T; Ono K; Itami M; Takahashi R; Teplow DB; Yamada M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5835-40. PubMed ID: 27162352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins.
    Perez C; Miti T; Hasecke F; Meisl G; Hoyer W; Muschol M; Ullah G
    J Phys Chem B; 2019 Jul; 123(27):5678-5689. PubMed ID: 31246474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulations of nucleation and elongation of amyloid fibrils.
    Zhang J; Muthukumar M
    J Chem Phys; 2009 Jan; 130(3):035102. PubMed ID: 19173542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils.
    John T; Rampioni A; Poger D; Mark AE
    ACS Chem Neurosci; 2024 Feb; 15(4):716-723. PubMed ID: 38235697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy.
    Huang Q; Wang H; Gao H; Cheng P; Zhu L; Wang C; Yang Y
    J Phys Chem Lett; 2019 Jan; 10(2):214-222. PubMed ID: 30543438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils.
    Huynen C; Willet N; Buell AK; Duwez AS; Jerôme C; Dumoulin M
    Biochim Biophys Acta; 2015 Mar; 1854(3):239-48. PubMed ID: 25489872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crucial role of nonspecific interactions in amyloid nucleation.
    Šarić A; Chebaro YC; Knowles TP; Frenkel D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17869-74. PubMed ID: 25453085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid Aggregation under the Lens of Liquid-Liquid Phase Separation.
    Xing Y; Nandakumar A; Kakinen A; Sun Y; Davis TP; Ke PC; Ding F
    J Phys Chem Lett; 2021 Jan; 12(1):368-378. PubMed ID: 33356290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aggregation of disease-related peptides.
    Nguyen PH; Sterpone F; Derreumaux P
    Prog Mol Biol Transl Sci; 2020; 170():435-460. PubMed ID: 32145950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation.
    John T; Adler J; Elsner C; Petzold J; Krueger M; Martin LL; Huster D; Risselada HJ; Abel B
    J Colloid Interface Sci; 2022 Sep; 622():804-818. PubMed ID: 35569410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
    Blancas-Mejía LM; Misra P; Ramirez-Alvarado M
    Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the lag phase in amyloid fibril formation.
    Arosio P; Knowles TP; Linse S
    Phys Chem Chem Phys; 2015 Mar; 17(12):7606-18. PubMed ID: 25719972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-β 42.
    Meng F; Yoo J; Chung HS
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2116736119. PubMed ID: 35290118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid membranes catalyse the fibril formation of the amyloid-β (1-42) peptide through lipid-fibril interactions that reinforce secondary pathways.
    Lindberg DJ; Wesén E; Björkeroth J; Rocha S; Esbjörner EK
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1921-1929. PubMed ID: 28564579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale Modeling of Amyloid Fibrils Formed by Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin.
    Koliński M; Dec R; Dzwolak W
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast propagation of β-amyloid fibrils in oligomeric cloud.
    Ogi H; Fukukshima M; Hamada H; Noi K; Hirao M; Yagi H; Goto Y
    Sci Rep; 2014 Nov; 4():6960. PubMed ID: 25376301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PAP(248-286) Conformational Changes during the Lag Phase of Amyloid Fibril Formation.
    Kusova AM; Yulmetov AR; Blokhin DS
    Biochemistry; 2023 Jun; 62(12):1906-1915. PubMed ID: 37246528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.