BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32146156)

  • 21. Yin and Yang of mitochondrial ROS in Drosophila.
    Towarnicki SG; Kok LM; Ballard JWO
    J Insect Physiol; 2020 Apr; 122():104022. PubMed ID: 32045573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila.
    Sanz A; Fernández-Ayala DJ; Stefanatos RK; Jacobs HT
    Aging (Albany NY); 2010 Apr; 2(4):200-23. PubMed ID: 20453260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells.
    Maxwell DP; Wang Y; McIntosh L
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8271-6. PubMed ID: 10393984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport.
    Challabathula D; Analin B; Mohanan A; Bakka K
    J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential.
    Ishihara G; Kawamoto K; Komori N; Ishibashi T
    Biochem Biophys Res Commun; 2020 Feb; 522(4):965-970. PubMed ID: 31810604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.
    El-Khoury R; Kaulio E; Lassila KA; Crowther DC; Jacobs HT; Rustin P
    Free Radic Biol Med; 2016 Jul; 96():57-66. PubMed ID: 27094492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production.
    Quinlan CL; Perevoschikova IV; Goncalves RL; Hey-Mogensen M; Brand MD
    Methods Enzymol; 2013; 526():189-217. PubMed ID: 23791102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I
    Wong HS; Monternier PA; Brand MD
    Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila.
    Liao PC; Tandarich LC; Hollenbeck PJ
    PLoS One; 2017; 12(5):e0178105. PubMed ID: 28542430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse Electron transfer through complex I.
    Dubouchaud H; Walter L; Rigoulet M; Batandier C
    J Bioenerg Biomembr; 2018 Oct; 50(5):367-377. PubMed ID: 30136168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.
    Banh S; Wiens L; Sotiri E; Treberg JR
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():99-107. PubMed ID: 26456509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana.
    Vishwakarma A; Tetali SD; Selinski J; Scheibe R; Padmasree K
    Ann Bot; 2015 Sep; 116(4):555-69. PubMed ID: 26292995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in
    Baek M; Jang W; Kim C
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial complex I: a central regulator of the aging process.
    Stefanatos R; Sanz A
    Cell Cycle; 2011 May; 10(10):1528-32. PubMed ID: 21471732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.
    O'Brien M; Chalker J; Slade L; Gardiner D; Mailloux RJ
    Free Radic Biol Med; 2017 May; 106():302-314. PubMed ID: 28242228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production and scavenging of reactive oxygen species both affect reproductive success in male and female Drosophila melanogaster.
    Turnell BR; Kumpitsch L; Reinhardt K
    Biogerontology; 2021 Aug; 22(4):379-396. PubMed ID: 33903991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.