These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32146400)

  • 1. Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation.
    Ji Y; Qin D; Zheng J; Shi Q; Wang J; Lin Q; Chen J; Gao Y; Li G; An T
    Sci Total Environ; 2020 Jun; 720():137610. PubMed ID: 32146400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OH-Initiated Oxidation of Acetylacetone: Implications for Ozone and Secondary Organic Aerosol Formation.
    Ji Y; Zheng J; Qin D; Li Y; Gao Y; Yao M; Chen X; Li G; An T; Zhang R
    Environ Sci Technol; 2018 Oct; 52(19):11169-11177. PubMed ID: 30160952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China.
    Wang D; Zhou B; Fu Q; Zhao Q; Zhang Q; Chen J; Yang X; Duan Y; Li J
    Sci Total Environ; 2016 Nov; 571():1454-66. PubMed ID: 27418517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric oxidation of Folpet initiated by OH radicals, NO
    Zhang C; Sun X; Tan W; Peng H
    RSC Adv; 2021 Jan; 11(4):2346-2352. PubMed ID: 35424196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals.
    Qi L; Nakao S; Cocker DR
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The experimental observation, mechanism and kinetic studies on the reaction of hexachloro-1,3-butadiene initiated by typical atmospheric oxidants.
    Zhang X; Yang M; Sun X; Wang X; Wang Y
    Sci Total Environ; 2018 Jun; 627():256-263. PubMed ID: 29426148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Quantification of 4-Nitrocatechol Formed from OH and NO
    Finewax Z; de Gouw JA; Ziemann PJ
    Environ Sci Technol; 2018 Feb; 52(4):1981-1989. PubMed ID: 29353485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessing the atmospheric oxidation mechanism of toluene.
    Ji Y; Zhao J; Terazono H; Misawa K; Levitt NP; Li Y; Lin Y; Peng J; Wang Y; Duan L; Pan B; Zhang F; Feng X; An T; Marrero-Ortiz W; Secrest J; Zhang AL; Shibuya K; Molina MJ; Zhang R
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8169-8174. PubMed ID: 28716940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic O
    Kenseth CM; Huang Y; Zhao R; Dalleska NF; Hethcox JC; Stoltz BM; Seinfeld JH
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8301-8306. PubMed ID: 30076229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.
    Kristensen K; Jensen LN; Glasius M; Bilde M
    Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.
    Docherty KS; Wu W; Lim YB; Ziemann PJ
    Environ Sci Technol; 2005 Jun; 39(11):4049-59. PubMed ID: 15984782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nocturnal atmospheric chemistry of NO
    Lin C; Hu R; Xie P; Lou S; Zhang G; Tong J; Liu J; Liu W
    J Environ Sci (China); 2022 Apr; 114():376-390. PubMed ID: 35459501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric Reactivity of Methoxyphenols: A Review.
    Liu C; Chen D; Chen X
    Environ Sci Technol; 2022 Mar; 56(5):2897-2916. PubMed ID: 35188384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles.
    Lim YB; Ziemann PJ
    Phys Chem Chem Phys; 2009 Sep; 11(36):8029-39. PubMed ID: 19727510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on ozonolysis of asymmetric alkenes with matrix isolation and FT-IR spectroscopy.
    Wang Z; Tong S; Chen M; Jing B; Li W; Guo Y; Ge M; Wang S
    Chemosphere; 2020 Aug; 252():126413. PubMed ID: 32197171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical investigation on the atmospheric degradation of the radical: reactions with NO, NO
    Feng B; Sun C; Zhao W; Zhang S
    Environ Sci Process Impacts; 2020 Jul; 22(7):1554-1565. PubMed ID: 32608429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory studies on secondary organic aerosol formation from terpenes.
    Iinuma Y; Böge O; Miao Y; Sierau B; Gnauk T; Herrmann H
    Faraday Discuss; 2005; 130():279-94; discussion 363-86, 519-24. PubMed ID: 16161789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of functional groups in the understanding of secondary organic aerosol formation mechanism from α-pinene.
    Jia L; Xu Y
    Sci Total Environ; 2020 Oct; 738():139831. PubMed ID: 32531597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.