These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32146414)

  • 1. Improving characteristics of biochar produced from collagen-containing solid wastes based on protease application in leather production.
    Cao S; Song J; Li H; Wang K; Li Y; Li Y; Lu F; Liu B
    Waste Manag; 2020 Mar; 105():531-539. PubMed ID: 32146414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of biochars produced from solid organic municipal waste on soil quality parameters.
    Randolph P; Bansode RR; Hassan OA; Rehrah D; Ravella R; Reddy MR; Watts DW; Novak JM; Ahmedna M
    J Environ Manage; 2017 May; 192():271-280. PubMed ID: 28183027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and application of unhairing enzyme using solid wastes from the leather industry-an attempt toward internalization of solid wastes within the leather industry.
    Ramesh RR; Muralidharan V; Palanivel S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2121-2136. PubMed ID: 29110233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan.
    Ocak B
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4643-4655. PubMed ID: 29197053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of biofuel production from leather solid wastes: Indian scenario.
    Mozhiarasi V; Natarajan TS; Karthik V; Anburajan P
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125214-125237. PubMed ID: 37488387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The status and developments of leather solid waste treatment: A mini-review.
    Jiang H; Liu J; Han W
    Waste Manag Res; 2016 May; 34(5):399-408. PubMed ID: 26944068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of organic compounds in biochars derived from municipal solid waste.
    Taherymoosavi S; Verheyen V; Munroe P; Joseph S; Reynolds A
    Waste Manag; 2017 Sep; 67():131-142. PubMed ID: 28601581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge.
    Wang G; Li Q; Dzakpasu M; Gao X; Yuwen C; Wang XC
    Waste Manag; 2018 Oct; 80():73-80. PubMed ID: 30455029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leather solid waste: An eco-benign raw material for leather chemical preparation - A circular economy example.
    Sathish M; Madhan B; Raghava Rao J
    Waste Manag; 2019 Mar; 87():357-367. PubMed ID: 31109536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation.
    Jin H; Capareda S; Chang Z; Gao J; Xu Y; Zhang J
    Bioresour Technol; 2014 Oct; 169():622-629. PubMed ID: 25103038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of biochars from pinewood gasification and municipal solid waste torrefaction as peat substitutes.
    Gascó G; Álvarez ML; Paz-Ferreiro J; Miguel GS; Méndez A
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26461-26469. PubMed ID: 29987467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocomposites from Organic Solid Wastes Derived Biochars: A Review.
    Zhang Q; Cai H; Yi W; Lei H; Liu H; Wang W; Ruan R
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil lead immobilization by biochars in short-term laboratory incubation studies.
    Igalavithana AD; Kwon EE; Vithanage M; Rinklebe J; Moon DH; Meers E; Tsang DCW; Ok YS
    Environ Int; 2019 Jun; 127():190-198. PubMed ID: 30925262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar.
    Kwon G; Bhatnagar A; Wang H; Kwon EE; Song H
    J Hazard Mater; 2020 Dec; 400():123242. PubMed ID: 32585525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K
    Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkaliphilic Enzymes and Their Application in Novel Leather Processing Technology for Next-Generation Tanneries.
    Wanyonyi WC; Mulaa FJ
    Adv Biochem Eng Biotechnol; 2020; 172():195-220. PubMed ID: 31049627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.
    Claoston N; Samsuri AW; Ahmad Husni MH; Mohd Amran MS
    Waste Manag Res; 2014 Apr; 32(4):331-9. PubMed ID: 24643171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tannery waste-derived biochar as a carrier of micronutrients essential to plants.
    Skrzypczak D; Szopa D; Mikula K; Izydorczyk G; Baśladyńska S; Hoppe V; Pstrowska K; Wzorek Z; Kominko H; Kułażyński M; Moustakas K; Chojnacka K; Witek-Krowiak A
    Chemosphere; 2022 May; 294():133720. PubMed ID: 35085620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties.
    Mandal S; Sarkar B; Igalavithana AD; Ok YS; Yang X; Lombi E; Bolan N
    Bioresour Technol; 2017 Dec; 246():160-167. PubMed ID: 28756126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.