These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32146493)

  • 1. Homing endonuclease I-SceI-mediated Corynebacterium glutamicum ATCC 13032 genome engineering.
    Wu M; Xu Y; Yang J; Shang G
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3597-3609. PubMed ID: 32146493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers.
    Xu J; Xia X; Zhang J; Guo Y; Qian H; Zhang W
    Plasmid; 2014 Mar; 72():9-17. PubMed ID: 24613758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
    Cho JS; Choi KR; Prabowo CPS; Shin JH; Yang D; Jang J; Lee SY
    Metab Eng; 2017 Jul; 42():157-167. PubMed ID: 28649005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel expression vector for Corynebacterium glutamicum with an auxotrophy complementation system.
    Li Y; Ai Y; Zhang J; Fei J; Liu B; Wang J; Li M; Zhao Q; Song J
    Plasmid; 2020 Jan; 107():102476. PubMed ID: 31758959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple large segment deletion method for Corynebacterium glutamicum.
    Suzuki N; Nonaka H; Tsuge Y; Okayama S; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):151-61. PubMed ID: 15843930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a novel expression system for use in Corynebacterium glutamicum.
    Hu J; Li Y; Zhang H; Tan Y; Wang X
    Plasmid; 2014 Sep; 75():18-26. PubMed ID: 25108235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.
    Hao N; Mu J; Hu N; Xu S; Yan M; Li Y; Guo K; Xu L
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):307-13. PubMed ID: 25492493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing recombineering in Corynebacterium glutamicum.
    Li C; Swofford CA; Rückert C; Sinskey AJ
    Biotechnol Bioeng; 2021 Jun; 118(6):2255-2264. PubMed ID: 33650120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy.
    Lobanova JS; Gorshkova NV; Krylov AA; Stoynova NV; Mashko SV
    J Microbiol Methods; 2022 Sep; 200():106555. PubMed ID: 35944822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome.
    Xu J; Zhang J; Han M; Zhang W
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1417-27. PubMed ID: 27377799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and antibiotic free genome integration into Escherichia coli chromosome.
    Egger E; Tauer C; Cserjan-Puschmann M; Grabherr R; Striedner G
    Sci Rep; 2020 Oct; 10(1):16510. PubMed ID: 33020519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum.
    Bakkes PJ; Ramp P; Bida A; Dohmen-Olma D; Bott M; Freudl R
    Plasmid; 2020 Nov; 112():102540. PubMed ID: 32991924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in Peptidoglycan Synthesis Gene
    Liu J; Wang Y; Lu Y; Ni X; Guo X; Zhao J; Chen J; Dele-Osibanjo T; Zheng P; Sun J; Ma Y
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30341076
    [No Abstract]   [Full Text] [Related]  

  • 17. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum.
    Tan Y; Xu D; Li Y; Wang X
    Plasmid; 2012 Jan; 67(1):44-52. PubMed ID: 22100974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
    Heider SA; Wendisch VF
    Biotechnol J; 2015 Aug; 10(8):1170-84. PubMed ID: 26216246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.
    Kortmann M; Kuhl V; Klaffl S; Bott M
    Microb Biotechnol; 2015 Mar; 8(2):253-65. PubMed ID: 25488698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.