BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32146510)

  • 1. Kinetics of cyanide and carbon monoxide dissociation from ferrous human haptoglobin:hemoglobin(II) complexes.
    Ascenzi P; De Simone G; Tundo GR; Coletta M
    J Biol Inorg Chem; 2020 May; 25(3):351-360. PubMed ID: 32146510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic inequivalence between α and β subunits of ligand dissociation from ferrous nitrosylated human haptoglobin:hemoglobin complexes. A comparison with O
    Ascenzi P; De Simone G; Pasquadibisceglie A; Gioia M; Coletta M
    J Inorg Biochem; 2021 Jan; 214():111272. PubMed ID: 33129126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen dissociation from ferrous oxygenated human hemoglobin:haptoglobin complexes confirms that in the R-state α and β chains are functionally heterogeneous.
    Ascenzi P; Polticelli F; Coletta M
    Sci Rep; 2019 May; 9(1):6780. PubMed ID: 31043649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2.
    Ascenzi P; De Simone G; Polticelli F; Gioia M; Coletta M
    J Biol Inorg Chem; 2018 May; 23(3):437-445. PubMed ID: 29605886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-dependent inequivalence of the α and β subunits of ferric human hemoglobin bound to haptoglobin.
    Ascenzi P; De Simone G; Ciaccio C; Coletta M
    J Inorg Biochem; 2020 Jan; 202():110814. PubMed ID: 31733428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride and azide binding to ferric human hemoglobin:haptoglobin complexes highlights the ligand-dependent inequivalence of the α and β hemoglobin chains.
    Ascenzi P; di Masi A; De Simone G; Gioia M; Coletta M
    J Biol Inorg Chem; 2019 Mar; 24(2):247-255. PubMed ID: 30706146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study.
    Ascenzi P; Coletta M
    J Phys Chem B; 2018 Dec; 122(49):11100-11107. PubMed ID: 30040419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptoglobin: From hemoglobin scavenging to human health.
    di Masi A; De Simone G; Ciaccio C; D'Orso S; Coletta M; Ascenzi P
    Mol Aspects Med; 2020 Jun; 73():100851. PubMed ID: 32660714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopy of the cyanide complex of iron (II) myoglobin and comparison with complexes of microperoxidase and hemoglobin.
    Reddy KS; Yonetani T; Tsuneshige A; Chance B; Kushkuley B; Stavrov SS; Vanderkooi JM
    Biochemistry; 1996 Apr; 35(17):5562-70. PubMed ID: 8611547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanide binding to ferrous and ferric microperoxidase-11.
    Ascenzi P; Sbardella D; Santucci R; Coletta M
    J Biol Inorg Chem; 2016 Jul; 21(4):511-22. PubMed ID: 27229515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative cyanide dissociation from ferrous hemoglobin.
    Brunori M; Antonini G; Castagnola M; Bellelli A
    J Biol Chem; 1992 Feb; 267(4):2258-63. PubMed ID: 1733933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced nitrite reductase activity associated with the haptoglobin complexed hemoglobin dimer: functional and antioxidative implications.
    Roche CJ; Dantsker D; Alayash AI; Friedman JM
    Nitric Oxide; 2012 Jun; 27(1):32-9. PubMed ID: 22521791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of hemoglobin and myoglobin with their ligands CN(-), CO, and O2 monitored by electrospray ionization-mass spectrometry.
    Sowole MA; Vuong S; Konermann L
    Anal Chem; 2015 Oct; 87(19):9538-45. PubMed ID: 26327529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptoglobin alters oxygenation and oxidation of hemoglobin and decreases propagation of peroxide-induced oxidative reactions.
    Banerjee S; Jia Y; Siburt CJ; Abraham B; Wood F; Bonaventura C; Henkens R; Crumbliss AL; Alayash AI
    Free Radic Biol Med; 2012 Sep; 53(6):1317-26. PubMed ID: 22841869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin.
    Mollan TL; Jia Y; Banerjee S; Wu G; Kreulen RT; Tsai AL; Olson JS; Crumbliss AL; Alayash AI
    Free Radic Biol Med; 2014 Apr; 69():265-77. PubMed ID: 24486321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide binding to truncated hemoglobins: a crystallographic and kinetic study.
    Milani M; Ouellet Y; Ouellet H; Guertin M; Boffi A; Antonini G; Bocedi A; Mattu M; Bolognesi M; Ascenzi P
    Biochemistry; 2004 May; 43(18):5213-21. PubMed ID: 15122887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrous Campylobacter jejuni truncated hemoglobin P displays an extremely high reactivity for cyanide - a comparative study.
    Bolli A; Ciaccio C; Coletta M; Nardini M; Bolognesi M; Pesce A; Guertin M; Visca P; Ascenzi P
    FEBS J; 2008 Feb; 275(4):633-45. PubMed ID: 18190529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperativity in the dissociation of nitric oxide from hemoglobin.
    Moore EG; Gibson QH
    J Biol Chem; 1976 May; 251(9):2788-94. PubMed ID: 1262343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemistry of the Fe(II)- and Fe(III)-cyanide complexes of the homodimeric Scapharca inaequivalvis hemoglobin. A resonance Raman and FTIR study.
    Boffi A; Chiancone E; Takahashi S; Rousseau DL
    Biochemistry; 1997 Apr; 36(15):4505-9. PubMed ID: 9109658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1.
    Sugishima M; Sakamoto H; Noguchi M; Fukuyama K
    Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.