BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32147356)

  • 21. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775.
    Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S
    Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of β-Amino Acids Enhances the Antifungal Activity and Selectivity of the Helical Antimicrobial Peptide Aurein 1.2.
    Lee MR; Raman N; Gellman SH; Lynn DM; Palecek SP
    ACS Chem Biol; 2017 Dec; 12(12):2975-2980. PubMed ID: 29091404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controls and constrains of the membrane disrupting action of Aurein 1.2.
    Shahmiri M; Enciso M; Mechler A
    Sci Rep; 2015 Nov; 5():16378. PubMed ID: 26574052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action.
    Chen R; Mark AE
    Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells.
    Madanchi H; Akbari S; Shabani AA; Sardari S; Farmahini Farahani Y; Ghavami G; Ebrahimi Kiasari R
    Drug Dev Res; 2019 Feb; 80(1):162-170. PubMed ID: 30593676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR studies of aurein 1.2 analogs.
    Li X; Li Y; Peterkofsky A; Wang G
    Biochim Biophys Acta; 2006 Sep; 1758(9):1203-14. PubMed ID: 16716252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2.
    Rozek T; Wegener KL; Bowie JH; Olver IN; Carver JA; Wallace JC; Tyler MJ
    Eur J Biochem; 2000 Sep; 267(17):5330-41. PubMed ID: 10951191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function.
    Rydberg HA; Carlsson N; Nordén B
    Biochem Biophys Res Commun; 2012 Oct; 427(2):261-5. PubMed ID: 22989747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.
    Torcato IM; Huang YH; Franquelim HG; Gaspar D; Craik DJ; Castanho MA; Troeira Henriques S
    Biochim Biophys Acta; 2013 Mar; 1828(3):944-55. PubMed ID: 23246973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes.
    Marcotte I; Wegener KL; Lam YH; Chia BC; de Planque MR; Bowie JH; Auger M; Separovic F
    Chem Phys Lipids; 2003 Jan; 122(1-2):107-20. PubMed ID: 12598042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Truncated and constrained helical analogs of antimicrobial esculentin-2EM.
    Pham TK; Kim DH; Lee BJ; Kim YW
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6717-20. PubMed ID: 24211019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical studies on the antimicrobial activity of linearized esculentin 2EM.
    Malik E; Phoenix DA; Badiani K; Snape TJ; Harris F; Singh J; Morton LHG; Dennison SR
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183141. PubMed ID: 31790693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding interactions of Citropin 1.1 analogues with model membranes and their influence on biological activity.
    Rodrigues de Almeida N; Catazaro J; Krishnaiah M; Singh Chhonker Y; Murry DJ; Powers R; Conda-Sheridan M
    Peptides; 2019 Sep; 119():170119. PubMed ID: 31336137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study.
    Abbassi F; Galanth C; Amiche M; Saito K; Piesse C; Zargarian L; Hani K; Nicolas P; Lequin O; Ladram A
    Biochemistry; 2008 Oct; 47(40):10513-25. PubMed ID: 18795798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes.
    Balla MS; Bowie JH; Separovic F
    Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption.
    Sani MA; Lee TH; Aguilar MI; Separovic F
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2277-89. PubMed ID: 26079051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5.
    Dennison SR; Morton LH; Phoenix DA
    Biochim Biophys Acta; 2012 Sep; 1818(9):2094-102. PubMed ID: 22617856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of two bombinin peptides with antimicrobial and anticancer activities from the skin secretion of Oriental fire-bellied toad, Bombina orientalis.
    Zhou C; Wang Z; Peng X; Liu Y; Lin Y; Zhang Z; Qiu Y; Jin M; Wang R; Kong D
    Chem Biol Drug Des; 2018 Jan; 91(1):50-61. PubMed ID: 28636781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs.
    Lee TH; Heng C; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.