BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32147421)

  • 1. The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease.
    Xu J; Kitada M; Koya D
    Biochim Biophys Acta Mol Basis Dis; 2020 Jun; 1866(6):165756. PubMed ID: 32147421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function.
    Kitada M; Ogura Y; Monno I; Koya D
    Front Endocrinol (Lausanne); 2019; 10():187. PubMed ID: 30972029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD
    Ogura Y; Kitada M; Xu J; Monno I; Koya D
    Aging (Albany NY); 2020 Jun; 12(12):11325-11336. PubMed ID: 32507768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chinese Herbal Medicine in Ameliorating Diabetic Kidney Disease via Activating Autophagy.
    Wang Y; Zhao H; Wang Q; Zhou X; Lu X; Liu T; Zhan Y; Li P
    J Diabetes Res; 2019; 2019():9030893. PubMed ID: 31828168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms.
    Qi W; Hu C; Zhao D; Li X
    Front Endocrinol (Lausanne); 2022; 13():801303. PubMed ID: 35634495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of resveratrol on sirtuins expression and cardiac complications in diabetes.
    Bagul PK; Dinda AK; Banerjee SK
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):221-7. PubMed ID: 26518647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects
    Miyamoto S; Zhang G; Hall D; Oates PJ; Maity S; Madesh M; Han X; Sharma K
    J Biol Chem; 2020 May; 295(21):7249-7260. PubMed ID: 32277051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Emerging Role of Sirtuin 1 in Cellular Metabolism, Diabetes Mellitus, Diabetic Kidney Disease and Hypertension.
    Guclu A; Erdur FM; Turkmen K
    Exp Clin Endocrinol Diabetes; 2016 Mar; 124(3):131-9. PubMed ID: 26588494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiology of diabetic kidney disease and autophagy: A review.
    Yu J; Liu Y; Li H; Zhang P
    Medicine (Baltimore); 2023 Jul; 102(30):e33965. PubMed ID: 37505163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirtuin Family and Diabetic Kidney Disease.
    Bian C; Ren H
    Front Endocrinol (Lausanne); 2022; 13():901066. PubMed ID: 35774140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Mitochondrial Dysfunction in Diabetic Kidney Disease: New Perspectives from Mechanism to Therapy.
    Yang Y; Liu J; Shi Q; Guo B; Jia H; Yang Y; Fu S
    Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunction in diabetic kidney disease.
    Wei PZ; Szeto CC
    Clin Chim Acta; 2019 Sep; 496():108-116. PubMed ID: 31276635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological Targeting of Mitochondria in Diabetic Kidney Disease.
    Cleveland KH; Schnellmann RG
    Pharmacol Rev; 2023 Mar; 75(2):250-262. PubMed ID: 36781216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective.
    Zhou S; Dai YM; Zeng XF; Chen HZ
    Front Endocrinol (Lausanne); 2020; 11():173. PubMed ID: 32308644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCa3.1 in diabetic kidney disease.
    Huang C; Chen XM; Pollock CA
    Curr Opin Nephrol Hypertens; 2022 Jan; 31(1):129-134. PubMed ID: 34710887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function.
    Yaribeygi H; Atkin SL; Sahebkar A
    J Cell Physiol; 2019 Jun; 234(6):8402-8410. PubMed ID: 30417488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease.
    Guo J; Liu Z; Gong R
    Clin Sci (Lond); 2019 Jun; 133(12):1321-1339. PubMed ID: 31221822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway.
    Yu Y; Wang L; Delguste F; Durand A; Guilbaud A; Rousselin C; Schmidt AM; Tessier F; Boulanger E; Neviere R
    Free Radic Biol Med; 2017 Nov; 112():397-410. PubMed ID: 28826719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-wide association study identifies a possible role for cannabinoid signalling in the pathogenesis of diabetic kidney disease.
    Osman W; Mousa M; Albreiki M; Baalfaqih Z; Daggag H; Hill C; McKnight AJ; Maxwell AP; Al Safar H
    Sci Rep; 2023 Mar; 13(1):4661. PubMed ID: 36949158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs: new biomarkers and promising therapeutic targets for diabetic kidney disease.
    Nascimento LRD; Domingueti CP
    J Bras Nefrol; 2019; 41(3):412-422. PubMed ID: 30742700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.