These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32147635)

  • 1. Silica nanoparticles enhance germ cell apoptosis by inducing reactive oxygen species (ROS) formation in Caenorhabditis elegans.
    Zhang F; You X; Zhu T; Gao S; Wang Y; Wang R; Yu H; Qian B
    J Toxicol Sci; 2020; 45(3):117-129. PubMed ID: 32147635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans.
    Li D; Ji J; Yuan Y; Wang D
    Chemosphere; 2020 Apr; 245():125625. PubMed ID: 31855754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A.
    Zuo D; Duan Z; Jia Y; Chu T; He Q; Yuan J; Dai W; Li Z; Xing L; Wu Y
    Colloids Surf B Biointerfaces; 2016 Sep; 145():232-240. PubMed ID: 27187187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species.
    Hu H; Fan X; Guo Q; Wei X; Yang D; Zhang B; Liu J; Wu Q; Oh Y; Feng Y; Chen K; Hou L; Gu N
    Part Fibre Toxicol; 2019 Nov; 16(1):41. PubMed ID: 31699096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans.
    Wu Q; Nouara A; Li Y; Zhang M; Wang W; Tang M; Ye B; Ding J; Wang D
    Chemosphere; 2013 Jan; 90(3):1123-31. PubMed ID: 23062833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(3-oxo-acyl) homoserine lactone induced germ cell apoptosis and suppressed the over-activated RAS/MAPK tumorigenesis via mitochondrial-dependent ROS in C. elegans.
    Chen B; Cao X; Lu H; Wen P; Qi X; Chen S; Wu L; Li C; Xu A; Zhao G
    Apoptosis; 2018 Dec; 23(11-12):626-640. PubMed ID: 30171376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic toxicity of hexabromocyclododecane(HBCD) induced by oxidative stress and cell apoptosis on nematode Caenorhabditis elegans.
    Wang X; Yang J; Li H; Guo S; Tariq M; Chen H; Wang C; Liu Y
    Chemosphere; 2018 Oct; 208():31-39. PubMed ID: 29860142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of silica nanoparticles on isolated rat uterine smooth muscle.
    Yaman S; Çömelekoğlu Ü; Değirmenci E; Karagül Mİ; Yalın S; Ballı E; Yıldırımcan S; Yıldırım M; Doğaner A; Ocakoğlu K
    Drug Chem Toxicol; 2018 Oct; 41(4):465-475. PubMed ID: 29115178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polystyrene nanoparticles induced neurodevelopmental toxicity in Caenorhabditis elegans through regulation of dpy-5 and rol-6.
    Shang Y; Wang S; Jin Y; Xue W; Zhong Y; Wang H; An J; Li H
    Ecotoxicol Environ Saf; 2021 Oct; 222():112523. PubMed ID: 34273852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Bromodiphenyl Ether Induces Germ Cell Apoptosis by Induction of ROS and DNA Damage in Caenorhabditis elegans.
    You X; Xi J; Cao Y; Zhang J; Luan Y
    Toxicol Sci; 2017 Jun; 157(2):510-518. PubMed ID: 28369609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model.
    Fang Z; Chen Y; Wang G; Feng T; Shen M; Xiao B; Gu J; Wang W; Li J; Zhang Y
    Food Funct; 2019 Sep; 10(9):5531-5543. PubMed ID: 31418439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress-mediated mitochondrial pathway-dependent apoptosis is induced by silica nanoparticles in
    Cui G; Zhang H; Guo Q; Shan S; Chen S; Li C; Yang X; Li Z; Mu Y; Shao H; Du Z
    Toxicol Mech Methods; 2020 Nov; 30(9):646-655. PubMed ID: 32746757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2 protects against oxidative stress induced by SiO
    Liu W; Hu T; Zhou L; Wu D; Huang X; Ren X; Lv Y; Hong W; Huang G; Lin Z; Liu J
    Nanomedicine (Lond); 2017 Oct; 12(19):2303-2318. PubMed ID: 28952419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells.
    Ahamed M; Akhtar MJ; Alhadlaq HA
    Environ Toxicol; 2020 May; 35(5):599-608. PubMed ID: 31904905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon dioxide nanoparticles induce COX-2 expression through activation of STAT3 signaling pathway in HaCaT cells.
    Kundu J; Kim DH; Chae IG; Lee JK; Lee S; Jeong CH; Chun KS
    Toxicol In Vitro; 2018 Oct; 52():235-242. PubMed ID: 29894800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clathrin-mediated endocytosis is involved in uptake and toxicity of silica nanoparticles in Caenohabditis elegans.
    Eom HJ; Choi J
    Chem Biol Interact; 2019 Sep; 311():108774. PubMed ID: 31369748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica nanoparticles induce liver fibrosis via TGF-β
    Yu Y; Duan J; Li Y; Li Y; Jing L; Yang M; Wang J; Sun Z
    Int J Nanomedicine; 2017; 12():6045-6057. PubMed ID: 28860765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-Exposure to SiO
    Ahamed M; Akhtar MJ; Alhadlaq HA
    Int J Environ Res Public Health; 2019 Sep; 16(17):. PubMed ID: 31480624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term toxicity of lindane through oxidative stress and cell apoptosis in Caenorhabditis elegans.
    Yu Y; Chen H; Hua X; Wang Z; Li L; Li Z; Xiang M; Ding P
    Environ Pollut; 2021 Mar; 272():116036. PubMed ID: 33218777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3β-Hydroxy-urs-12-en-28-oic acid confers protection against ZnONPs induced adversity in Caenorhabditis elegans.
    Negi H; Saikia SK; Kanaujia R; Jaiswal S; Pandey R
    Environ Toxicol Pharmacol; 2017 Jul; 53():105-110. PubMed ID: 28531761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.