These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32147637)

  • 1. In silico systems for predicting chemical-induced side effects using known and potential chemical protein interactions, enabling mechanism estimation.
    Amano Y; Honda H; Sawada R; Nukada Y; Yamane M; Ikeda N; Morita O; Yamanishi Y
    J Toxicol Sci; 2020; 45(3):137-149. PubMed ID: 32147637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the mode-of-action of Cassia auriculata via in silico and in vivo studies towards validating it as a long term therapy for type II diabetes.
    Mohd Fauzi F; John CM; Karunanidhi A; Mussa HY; Ramasamy R; Adam A; Bender A
    J Ethnopharmacol; 2017 Feb; 197():61-72. PubMed ID: 27452659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving compound-protein interaction prediction by building up highly credible negative samples.
    Liu H; Sun J; Guan J; Zheng J; Zhou S
    Bioinformatics; 2015 Jun; 31(12):i221-9. PubMed ID: 26072486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer.
    Shankar E; Weis MC; Avva J; Shukla S; Shukla M; Sreenath SN; Gupta S
    Cells; 2019 Feb; 8(3):. PubMed ID: 30813597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico assessment of adverse drug reactions and associated mechanisms.
    Ivanov SM; Lagunin AA; Poroikov VV
    Drug Discov Today; 2016 Jan; 21(1):58-71. PubMed ID: 26272036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiogenin interacts with ribonuclease inhibitor regulating PI3K/AKT/mTOR signaling pathway in bladder cancer cells.
    Peng Y; Li L; Huang M; Duan C; Zhang L; Chen J
    Cell Signal; 2014 Dec; 26(12):2782-92. PubMed ID: 25193113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems biology of the metabolic network regulated by the Akt pathway.
    Mosca E; Barcella M; Alfieri R; Bevilacqua A; Canti G; Milanesi L
    Biotechnol Adv; 2012; 30(1):131-41. PubMed ID: 21856401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety pharmacology in 2014: new focus on non-cardiac methods and models.
    Pugsley MK; Dalton JA; Authier S; Curtis MJ
    J Pharmacol Toxicol Methods; 2014; 70(2):170-4. PubMed ID: 25128820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity prediction using target, interactome, and pathway profiles as descriptors.
    Füzi B; Mathai N; Kirchmair J; Ecker GF
    Toxicol Lett; 2023 May; 381():20-26. PubMed ID: 37061207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice.
    Chamcheu JC; Adhami VM; Esnault S; Sechi M; Siddiqui IA; Satyshur KA; Syed DN; Dodwad SM; Chaves-Rodriquez MI; Longley BJ; Wood GS; Mukhtar H
    Antioxid Redox Signal; 2017 Jan; 26(2):49-69. PubMed ID: 27393705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.
    Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers.
    Cai C; Fang J; Guo P; Wang Q; Hong H; Moslehi J; Cheng F
    J Chem Inf Model; 2018 May; 58(5):943-956. PubMed ID: 29712429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.