These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32149095)
1. Microbial Decolorization of Triazo Dye, Direct Blue 71: An Optimization Approach Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Zin KM; Effendi Halmi MI; Abd Gani SS; Zaidan UH; Samsuri AW; Abd Shukor MY Biomed Res Int; 2020; 2020():2734135. PubMed ID: 32149095 [TBL] [Abstract][Full Text] [Related]
2. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Lalnunhlimi S; Krishnaswamy V Braz J Microbiol; 2016; 47(1):39-46. PubMed ID: 26887225 [TBL] [Abstract][Full Text] [Related]
3. Dye-decolorization of a newly isolated strain Bacillus amyloliquefaciens W36. Liu Y; Shao Z; Reng X; Zhou J; Qin W World J Microbiol Biotechnol; 2021 Jan; 37(1):8. PubMed ID: 33392823 [TBL] [Abstract][Full Text] [Related]
4. Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. Hafshejani MK; Ogugbue CJ; Morad N 3 Biotech; 2014 Dec; 4(6):605-619. PubMed ID: 28324306 [TBL] [Abstract][Full Text] [Related]
5. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Asgari G; Shabanloo A; Salari M; Eslami F Environ Res; 2020 May; 184():109367. PubMed ID: 32199323 [TBL] [Abstract][Full Text] [Related]
6. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Mohana S; Shrivastava S; Divecha J; Madamwar D Bioresour Technol; 2008 Feb; 99(3):562-9. PubMed ID: 17804220 [TBL] [Abstract][Full Text] [Related]
7. Decolorization of textile azo dye Novacron Red using bacterial monoculture and consortium: Response surface methodology optimization. Guembri M; Neifar M; Saidi M; Ferjani R; Chouchane H; Mosbah A; Cherif A; Saidi N; Ouzari HI Water Environ Res; 2021 Aug; 93(8):1346-1360. PubMed ID: 33506567 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. He F; Hu W; Li Y Chemosphere; 2004 Oct; 57(4):293-301. PubMed ID: 15312727 [TBL] [Abstract][Full Text] [Related]
9. Response surface methodology for optimization of culture conditions for dye decolorization by a fungus, Aspergillus niger HM11 isolated from dye affected soil. Karthikeyan K; Nanthakumar K; Shanthi K; Lakshmanaperumalsamy P Iran J Microbiol; 2010 Dec; 2(4):213-22. PubMed ID: 22347575 [TBL] [Abstract][Full Text] [Related]
10. Factors Influencing Decolourization and Detoxification of Remazol Brilliant Blue R Dye by Abdelsalam SA; M Abdelhafez A; H Abu-Hussien S; A Abou-Taleb K Pak J Biol Sci; 2021 Jan; 24(11):1183-1194. PubMed ID: 34842391 [TBL] [Abstract][Full Text] [Related]
11. Decolorization and degradation of azo dye--Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Jain K; Shah V; Chapla D; Madamwar D J Hazard Mater; 2012 Apr; 213-214():378-86. PubMed ID: 22370200 [TBL] [Abstract][Full Text] [Related]
12. Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. Garg N; Garg A; Mukherji S J Environ Manage; 2020 Jun; 263():110383. PubMed ID: 32174525 [TBL] [Abstract][Full Text] [Related]
13. Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium. Cao J; Sanganyado E; Liu W; Zhang W; Liu Y J Environ Manage; 2019 Jul; 242():229-237. PubMed ID: 31048228 [TBL] [Abstract][Full Text] [Related]
14. Modeling and optimization by particle swarm embedded neural network for adsorption of methylene blue by jicama peroxidase immobilized on buckypaper/polyvinyl alcohol membrane. Jun LY; Karri RR; Yon LS; Mubarak NM; Bing CH; Mohammad K; Jagadish P; Abdullah EC Environ Res; 2020 Apr; 183():109158. PubMed ID: 32044575 [TBL] [Abstract][Full Text] [Related]
15. Effect of various carbon and nitrogen sources on decolorization of textile dye remazol golden yellow using bacterial species. Palanivelan R; Rajakumar S; Ayyasamy PM J Environ Biol; 2014 Sep; 35(5):781-7. PubMed ID: 25204047 [TBL] [Abstract][Full Text] [Related]
16. Statistical optimization for the efficacious degradation of reactive azo dyes using Acinetobacter baumannii JC359. Ameenudeen S; Unnikrishnan S; Ramalingam K J Environ Manage; 2021 Feb; 279():111512. PubMed ID: 33162232 [TBL] [Abstract][Full Text] [Related]
17. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design. Sharma P; Singh L; Dilbaghi N J Hazard Mater; 2009 May; 164(2-3):1024-9. PubMed ID: 18845394 [TBL] [Abstract][Full Text] [Related]
18. Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) Approach for Modelling the Optimization of Chromium (VI) Reduction by Newly Isolated Ram Talib NS; Halmi MIE; Abd Ghani SS; Zaidan UH; Shukor MYA Biomed Res Int; 2019; 2019():5785387. PubMed ID: 31240217 [TBL] [Abstract][Full Text] [Related]
19. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Saratale RG; Saratale GD; Chang JS; Govindwar SP Biodegradation; 2010 Nov; 21(6):999-1015. PubMed ID: 20407917 [TBL] [Abstract][Full Text] [Related]
20. Decolorization of diazo-dye Reactive Blue 172 by Pseudomonas aeruginosa NBAR12. Bhatt N; Patel KC; Keharia H; Madamwar D J Basic Microbiol; 2005; 45(6):407-18. PubMed ID: 16304703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]