These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32149206)

  • 1. Mini-Review on the Redox Additives in Aqueous Electrolyte for High Performance Supercapacitors.
    Qin W; Zhou N; Wu C; Xie M; Sun H; Guo Y; Pan L
    ACS Omega; 2020 Mar; 5(8):3801-3808. PubMed ID: 32149206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives.
    Hu L; Zhai T; Li H; Wang Y
    ChemSusChem; 2019 Mar; 12(6):1118-1132. PubMed ID: 30427120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte.
    Chen YC; Lin LY
    J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in supercapacitors: from materials design to system construction.
    Wang Y; Xia Y
    Adv Mater; 2013 Oct; 25(37):5336-42. PubMed ID: 24089352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors.
    Chen L; Wu C; Qin W; Wang X; Jia C
    J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries.
    Wan F; Zhang Y; Zhang L; Liu D; Wang C; Song L; Niu Z; Chen J
    Angew Chem Int Ed Engl; 2019 May; 58(21):7062-7067. PubMed ID: 30893503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
    Liu N; Gao Y
    Small; 2017 Dec; 13(45):. PubMed ID: 28976109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on Working Voltage of Aqueous Supercapacitors.
    Guo T; Zhou D; Pang L; Sun S; Zhou T; Su J
    Small; 2022 Apr; 18(16):e2106360. PubMed ID: 35064755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.
    Wang X; Chandrabose RS; Chun SE; Zhang T; Evanko B; Jian Z; Boettcher SW; Stucky GD; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19978-85. PubMed ID: 26310453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.
    Wang S; Wang R; Zhang Y; Zhang L
    Nanotechnology; 2017 Nov; 28(44):445406. PubMed ID: 28783039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Chlorine-Based Redox Electrochemical Capacitor.
    Li J; Hu T; Wang Y; Chen S; Wang C; Zhang D; Sun Z; Li F
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24396-24403. PubMed ID: 35580287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of electrolyte materials and compositions for electrochemical supercapacitors.
    Zhong C; Deng Y; Hu W; Qiao J; Zhang L; Zhang J
    Chem Soc Rev; 2015 Nov; 44(21):7484-539. PubMed ID: 26050756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors.
    Park J; Kumar V; Wang X; Lee PS; Kim W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte.
    Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.