These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32149494)

  • 1. Redox-Reversible Electrode Material for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Qiu P; Yang X; Wang W; Wei T; Lu Y; Lin J; Yuan Z; Jia L; Li J; Chen F
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13988-13995. PubMed ID: 32149494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells.
    Lo Faro M; Campagna Zignani S; Aricò AS
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Ding H; Tao Z; Liu S; Zhang J
    Sci Rep; 2015 Dec; 5():18129. PubMed ID: 26648509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.
    Sengodan S; Choi S; Jun A; Shin TH; Ju YW; Jeong HY; Shin J; Irvine JT; Kim G
    Nat Mater; 2015 Feb; 14(2):205-9. PubMed ID: 25532072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells.
    Yang C; Yang Z; Jin C; Xiao G; Chen F; Han M
    Adv Mater; 2012 Mar; 24(11):1439-43. PubMed ID: 22318883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.
    Shin TH; Ida S; Ishihara T
    J Am Chem Soc; 2011 Dec; 133(48):19399-407. PubMed ID: 22011010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells.
    Li J; Wei B; Yue X; Lü Z
    ChemSusChem; 2018 Aug; 11(15):2593-2603. PubMed ID: 29851249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in Perovskite-Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review.
    Samreen A; Ali MS; Huzaifa M; Ali N; Hassan B; Ullah F; Ali S; Arifin NA
    Chem Rec; 2024 Jan; 24(1):e202300247. PubMed ID: 37933973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Performance and Durable Direct-Ammonia Symmetrical Solid Oxide Fuel Cell with Nano La
    Jiang H; Liang Z; Qiu H; Yi Y; Jiang S; Xu J; Wang W; Su C; Yang T
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells.
    Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
    Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B-Site Super-Excess Design Sr
    Song L; Chen D; Pan J; Hu X; Shen X; Huan Y; Wei T
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48296-48303. PubMed ID: 37812387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A-Site Ordered Double Perovskite with in Situ Exsolved Core-Shell Nanoparticles as Anode for Solid Oxide Fuel Cells.
    Hou N; Yao T; Li P; Yao X; Gan T; Fan L; Wang J; Zhi X; Zhao Y; Li Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6995-7005. PubMed ID: 30668911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst.
    Du Z; Zhao H; Yi S; Xia Q; Gong Y; Zhang Y; Cheng X; Li Y; Gu L; Świerczek K
    ACS Nano; 2016 Sep; 10(9):8660-9. PubMed ID: 27529355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn
    Ren R; Wang Z; Meng X; Xu C; Qiao J; Sun W; Sun K
    ACS Appl Mater Interfaces; 2020 May; 12(21):23959-23967. PubMed ID: 32352274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells.
    Li J; Wei B; Cao Z; Yue X; Zhang Y; Lü Z
    ChemSusChem; 2018 Jan; 11(1):254-263. PubMed ID: 28976645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium-Doped Sr
    Zheng K; Lach J; Zhao H; Huang X; Qi K
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium-Entropy SrV
    Ma G; Chen D; Ji S; Bai X; Wang X; Huan Y; Dong D; Hu X; Wei T
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.