These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 32149496)
21. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion. Srivastava N; Thakur AK; Shahi VK Carbohydr Polym; 2016 Jan; 136():1315-22. PubMed ID: 26572476 [TBL] [Abstract][Full Text] [Related]
22. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan. Prakash N; Latha S; Sudha PN; Renganathan NG Environ Sci Pollut Res Int; 2013 Feb; 20(2):925-38. PubMed ID: 22565982 [TBL] [Abstract][Full Text] [Related]
23. Cellulose based polyurethane with amino acid functionality: Design, synthesis, computational study and application in wastewater purification. Rub HA; Deghles A; Hamed O; Azzaoui K; Hammouti B; Taleb M; Berisha A; Dagdag O; Mansour W; Hacıosmanoğlu GG; Can ZS; Rhazi L Int J Biol Macromol; 2023 Jun; 239():124328. PubMed ID: 37019199 [TBL] [Abstract][Full Text] [Related]
24. Functional, mesoporous, superparamagnetic colloidal sorbents for efficient removal of toxic metals. Sinha A; Jana NR Chem Commun (Camb); 2012 Sep; 48(74):9272-4. PubMed ID: 22872025 [TBL] [Abstract][Full Text] [Related]
25. Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation. Alcaraz-Espinoza JJ; Chávez-Guajardo AE; Medina-Llamas JC; Andrade CA; de Melo CP ACS Appl Mater Interfaces; 2015 Apr; 7(13):7231-40. PubMed ID: 25761543 [TBL] [Abstract][Full Text] [Related]
26. Mg-Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals. Yu J; Zhu Z; Zhang H; Qiu Y; Yin D Environ Sci Pollut Res Int; 2018 Aug; 25(24):24293-24304. PubMed ID: 29948711 [TBL] [Abstract][Full Text] [Related]
27. Biomass-derived materials in the remediation of heavy-metal contaminated water: removal of Cadmium(II) and copper(II) from aqueous solutions. Tiwari D; Lee SM Water Environ Res; 2011 Sep; 83(9):874-81. PubMed ID: 22073735 [TBL] [Abstract][Full Text] [Related]
28. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe₃O₄ Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals. Habila MA; ALOthman ZA; El-Toni AM; Labis JP; Khan A; Al-Marghany A; Elafifi HE Molecules; 2017 Nov; 22(12):. PubMed ID: 29186894 [TBL] [Abstract][Full Text] [Related]
29. Efficient removal of heavy metals by endophytic bacteria Staphylococcus succinus H3. Luo H; Yang C; Pang M; Wang Y; Cheng W; Jiang K; Ling L J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626795 [TBL] [Abstract][Full Text] [Related]
30. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Chen X; Cui J; Xu X; Sun B; Zhang L; Dong W; Chen C; Sun D Carbohydr Polym; 2020 Feb; 229():115512. PubMed ID: 31826502 [TBL] [Abstract][Full Text] [Related]
31. New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation. Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51808-51825. PubMed ID: 33990925 [TBL] [Abstract][Full Text] [Related]
32. Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. Zhao J; Zhu YJ; Wu J; Zheng JQ; Zhao XY; Lu BQ; Chen F J Colloid Interface Sci; 2014 Mar; 418():208-15. PubMed ID: 24461837 [TBL] [Abstract][Full Text] [Related]
33. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Rungrodnimitchai S ScientificWorldJournal; 2014; 2014():634837. PubMed ID: 24578651 [TBL] [Abstract][Full Text] [Related]
34. Preparation of cellulose-based porous adsorption materials derived from corn straw for wastewater purification. Zhu C; Wang W; Wu Z; Zhang X; Chu Z; Yang Z Int J Biol Macromol; 2023 Apr; 233():123595. PubMed ID: 36773870 [TBL] [Abstract][Full Text] [Related]
35. Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. Seidi F; Reza Saeb M; Huang Y; Akbari A; Xiao H Chem Rec; 2021 Jul; 21(7):1876-1896. PubMed ID: 34101343 [TBL] [Abstract][Full Text] [Related]
36. Removal of heavy metals ions from wastewater with conventional activated sludge process: case study in Isfahan (Iran). Jalilzadeh A; Parvaresh A Pak J Biol Sci; 2007 Mar; 10(5):818-22. PubMed ID: 19069872 [TBL] [Abstract][Full Text] [Related]
37. Thiol-functionalized cellulose for mercury polluted water remediation: Synthesis and study of the adsorption properties. Algieri V; Tursi A; Costanzo P; Maiuolo L; De Nino A; Nucera A; Castriota M; De Luca O; Papagno M; Caruso T; Ciurciù S; Corrente GA; Beneduci A Chemosphere; 2024 May; 355():141891. PubMed ID: 38575086 [TBL] [Abstract][Full Text] [Related]
38. Advances in green materials derived from wood for detecting and removing mercury ions in water. Liu C; Li Y; Gai X; Xiang Z; Jiang W; He S; Liu Y; Xiao H Environ Pollut; 2023 Oct; 335():122351. PubMed ID: 37567404 [TBL] [Abstract][Full Text] [Related]
39. Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater. Zhao M; Wang S; Wang H; Qin P; Yang D; Sun Y; Kong F Environ Pollut; 2019 May; 248():938-946. PubMed ID: 30861416 [TBL] [Abstract][Full Text] [Related]
40. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Mureseanu M; Reiss A; Stefanescu I; David E; Parvulescu V; Renard G; Hulea V Chemosphere; 2008 Nov; 73(9):1499-504. PubMed ID: 18760443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]