These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis. Bock T; Reichelt J; Müller R; Blankenfeldt W Chembiochem; 2016 Sep; 17(17):1658-64. PubMed ID: 27271456 [TBL] [Abstract][Full Text] [Related]
3. Recent advances in the microbial production of isopentanol (3-Methyl-1-butanol). Runguphan W; Sae-Tang K; Tanapongpipat S World J Microbiol Biotechnol; 2021 May; 37(6):107. PubMed ID: 34043086 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in Hammer SK; Zhang Y; Avalos JL ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515 [TBL] [Abstract][Full Text] [Related]
5. The AibR-isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus. Bock T; Volz C; Hering V; Scrima A; Müller R; Blankenfeldt W Nucleic Acids Res; 2017 Feb; 45(4):2166-2178. PubMed ID: 27940564 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol). Siripong W; Angela C; Tanapongpipat S; Runguphan W Enzyme Microb Technol; 2020 Aug; 138():109557. PubMed ID: 32527534 [TBL] [Abstract][Full Text] [Related]
7. AibA/AibB Induces an Intramolecular Decarboxylation in Isovalerate Biosynthesis by Myxococcus xanthus. Bock T; Luxenburger E; Hoffmann J; Schütza V; Feiler C; Müller R; Blankenfeldt W Angew Chem Int Ed Engl; 2017 Aug; 56(33):9986-9989. PubMed ID: 28508504 [TBL] [Abstract][Full Text] [Related]
8. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402 [TBL] [Abstract][Full Text] [Related]
9. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Zhang X; Agrawal A; San KY Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854 [TBL] [Abstract][Full Text] [Related]
10. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors. Aristilde L Microb Biotechnol; 2017 Jan; 10(1):162-174. PubMed ID: 27878973 [TBL] [Abstract][Full Text] [Related]
11. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. Bode HB; Ring MW; Schwär G; Altmeyer MO; Kegler C; Jose IR; Singer M; Müller R Chembiochem; 2009 Jan; 10(1):128-40. PubMed ID: 18846531 [TBL] [Abstract][Full Text] [Related]
12. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. Bode HB; Ring MW; Schwär G; Kroppenstedt RM; Kaiser D; Müller R J Bacteriol; 2006 Sep; 188(18):6524-8. PubMed ID: 16952943 [TBL] [Abstract][Full Text] [Related]
13. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Baek JM; Mazumdar S; Lee SW; Jung MY; Lim JH; Seo SW; Jung GY; Oh MK Biotechnol Bioeng; 2013 Oct; 110(10):2790-4. PubMed ID: 23568786 [TBL] [Abstract][Full Text] [Related]
14. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Singer M; Kaiser D Genes Dev; 1995 Jul; 9(13):1633-44. PubMed ID: 7628697 [TBL] [Abstract][Full Text] [Related]
15. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends. Baer ZC; Bormann S; Sreekumar S; Grippo A; Toste FD; Blanch HW; Clark DS Biotechnol Bioeng; 2016 Oct; 113(10):2079-87. PubMed ID: 26987294 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Dusséaux S; Croux C; Soucaille P; Meynial-Salles I Metab Eng; 2013 Jul; 18():1-8. PubMed ID: 23541907 [TBL] [Abstract][Full Text] [Related]
17. Engineered microbial biofuel production and recovery under supercritical carbon dioxide. Boock JT; Freedman AJE; Tompsett GA; Muse SK; Allen AJ; Jackson LA; Castro-Dominguez B; Timko MT; Prather KLJ; Thompson JR Nat Commun; 2019 Feb; 10(1):587. PubMed ID: 30718495 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G; Lindner SN; Wendisch VF Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602 [TBL] [Abstract][Full Text] [Related]
19. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus. Kimura Y; Tanaka C; Oka M Curr Microbiol; 2018 Jul; 75(7):811-817. PubMed ID: 29468302 [TBL] [Abstract][Full Text] [Related]
20. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO Carlson ED; Papoutsakis ET Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]