BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32149656)

  • 1. Electrowetting: A Consideration in Electroadhesion.
    Li X; Choi C; Ma Y; Boonpuek P; Felts JR; Mullenbach J; Shultz C; Colgate JE; Hipwell MC
    IEEE Trans Haptics; 2020; 13(3):522-529. PubMed ID: 32149656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotexture Shape and Surface Energy Impact on Electroadhesive Human-Machine Interface Performance.
    Li X; Ma Y; Choi C; Ma X; Chatterjee S; Lan S; Hipwell MC
    Adv Mater; 2021 Aug; 33(31):e2008337. PubMed ID: 34173278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Electrowetting Effect on the Interfacial Mechanics between Human Corneocytes and Nanoasperities.
    Boonpuek P; Ma Y; Li X; Choi C; Hipwell MC; Felts JR
    Langmuir; 2021 Apr; 37(14):4056-4063. PubMed ID: 33793250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Sliding Friction Between Human Finger and Touchscreen Under Electroadhesion.
    Basdogan C; Sormoli MRA; Sirin O
    IEEE Trans Haptics; 2020; 13(3):511-521. PubMed ID: 32324569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact mechanics between the human finger and a touchscreen under electroadhesion.
    Ayyildiz M; Scaraggi M; Sirin O; Basdogan C; Persson BNJ
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12668-12673. PubMed ID: 30482858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Macro Model for Electroadhesive Contact of a Soft Finger With a Touchscreen.
    Argatov II; Borodich FM
    IEEE Trans Haptics; 2020; 13(3):504-510. PubMed ID: 31995499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering.
    V Grigorii R; Colgate JE
    IEEE Trans Haptics; 2020; 13(1):253-258. PubMed ID: 32054585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the Mechanical Properties and Thickness of Glass Affect TPaD Performance.
    Xu H; Peshkin MA; Colgate JE
    IEEE Trans Haptics; 2020; 13(3):483-492. PubMed ID: 32746384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application of Tactile, Audible, and Ultrasonic Forces to Human Fingertips Using Broadband Electroadhesion.
    Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE
    IEEE Trans Haptics; 2018; 11(2):279-290. PubMed ID: 29911983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-Dependent Behavior of Electrostatic Forces Between Human Finger and Touch Screen Under Electroadhesion.
    AliAbbasi E; Sormoli MA; Basdogan C
    IEEE Trans Haptics; 2022; 15(2):416-428. PubMed ID: 35171777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localizable Button Click Rendering via Active Lateral Force Feedback.
    Xu H; L Klatzky R; A Peshkin M; Colgate JE
    IEEE Trans Haptics; 2020; 13(3):552-561. PubMed ID: 32356762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile Roughness Perception of Virtual Gratings by Electrovibration.
    Isleyen A; Vardar Y; Basdogan C
    IEEE Trans Haptics; 2020; 13(3):562-570. PubMed ID: 31841422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroadhesion with application to touchscreens.
    Sirin O; Ayyildiz M; Persson BNJ; Basdogan C
    Soft Matter; 2019 Feb; 15(8):1758-1775. PubMed ID: 30702137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eShiver: Lateral Force Feedback on Fingertips through Oscillatory Motion of an Electroadhesive Surface.
    Mullenbach J; Peshkin M; Colgate JE
    IEEE Trans Haptics; 2017; 10(3):358-370. PubMed ID: 27875231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Friction-Modulated Textures is Limited by Vibrotactile Sensitivity.
    Bernard C; Ystad S; Monnoyer J; Wiertlewski M
    IEEE Trans Haptics; 2020; 13(3):542-551. PubMed ID: 32287005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roughness of simulated surfaces examined with a haptic tool: effects of spatial period, friction, and resistance amplitude.
    Smith AM; Basile G; Theriault-Groom J; Fortier-Poisson P; Campion G; Hayward V
    Exp Brain Res; 2010 Apr; 202(1):33-43. PubMed ID: 20012535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fingerpad contact evolution under electrovibration.
    Sirin O; Barrea A; Lefèvre P; Thonnard JL; Basdogan C
    J R Soc Interface; 2019 Jul; 16(156):20190166. PubMed ID: 31362623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Wide-Band Vibrotactile and Friction Modulation Surface Gratings.
    Grigorii RV; Li Y; Peshkin MA; Colgate JE
    IEEE Trans Haptics; 2021; 14(4):792-803. PubMed ID: 33905334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finger motion and contact by a second finger influence the tactile perception of electrovibration.
    Vardar Y; Kuchenbecker KJ
    J R Soc Interface; 2021 Mar; 18(176):20200783. PubMed ID: 33784888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.