These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32149873)

  • 61. Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players.
    Jones AM; Atter T; Georg KP
    J Sports Med Phys Fitness; 1999 Sep; 39(3):189-96. PubMed ID: 10573659
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Elite Adolescent Ice Hockey Players: Analyzing Associations between Anthropometry, Fitness, and On-Ice Performance.
    Martini G; Brunelle JF; Lalande V; Lemoyne J
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897327
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hip abduction-adduction strength and one-leg hop tests: test-retest reliability and relationship to function in elite ice hockey players.
    Kea J; Kramer J; Forwell L; Birmingham T
    J Orthop Sports Phys Ther; 2001 Aug; 31(8):446-55. PubMed ID: 11508614
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Skin conditions in figure skaters, ice-hockey players and speed skaters: part II - cold-induced, infectious and inflammatory dermatoses.
    Tlougan BE; Mancini AJ; Mandell JA; Cohen DE; Sanchez MR
    Sports Med; 2011 Nov; 41(11):967-84. PubMed ID: 21985216
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of Rest Period Duration between Sets of Repeated Sprint Skating Ability Test on the Skating Ability of Ice Hockey Players.
    Baron J; Gupta S; Bieniec A; Klich G; Gabrys T; Swinarew AS; Svatora K; Stanula A
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682336
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ice Hockey-Specific Repeated Shuttle Sprint Test Performed on Ice Should Not Be Replaced by Off-Ice Testing.
    Legerlotz K; Kittelmann J; Dietzel M; Wolfarth B; Böhlke N
    J Strength Cond Res; 2022 Apr; 36(4):1071-1076. PubMed ID: 32218060
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reliability of the Single-Leg, Medial Countermovement Jump in Youth Ice Hockey Players.
    Donskov AS; Brooks JS; Dickey JP
    Sports (Basel); 2021 May; 9(5):. PubMed ID: 34068061
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Relationship between hockey skating speed and selected performance measures.
    Behm DG; Wahl MJ; Button DC; Power KE; Anderson KG
    J Strength Cond Res; 2005 May; 19(2):326-31. PubMed ID: 15903370
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Association Between Physical Performance Tests and External Load During Scrimmages in Highly Trained Youth Ice Hockey Players.
    Byrkjedal PT; Bjørnsen T; Luteberget LS; Lindberg K; Ivarsson A; Haukali E; Spencer M
    Int J Sports Physiol Perform; 2023 Jan; 18(1):47-54. PubMed ID: 36470253
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reliability of an ice hockey-specific complex test.
    Schwesig R; Lauenroth A; Schulze S; Laudner KG; Bartels T; Delank KS; Reinhardt L; Kurz E; Hermassi S
    Sportverletz Sportschaden; 2018 Aug; 32(3):196-203. PubMed ID: 30176694
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Wingate Anaerobic Test Reliability on the Velotron With Ice Hockey Players.
    Bringhurst RF; Wagner DR; Schwartz S
    J Strength Cond Res; 2020 Jun; 34(6):1716-1722. PubMed ID: 29385006
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparsions among VO2 max values for hockey players and runners.
    Léger L; Seliger V; Brassard L
    Can J Appl Sport Sci; 1979 Mar; 4(1):18-21. PubMed ID: 498395
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting On-Ice Skating Using Laboratory- and Field-Based Assessments in College Ice Hockey Players.
    Delisle-Houde P; Chiarlitti NA; Reid RER; Andersen RE
    Int J Sports Physiol Perform; 2019 Oct; 14(9):1184-1189. PubMed ID: 30840516
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparison of on-ice and off-ice graded exercise testing in collegiate hockey players.
    Durocher JJ; Guisfredi AJ; Leetun DT; Carter JR
    Appl Physiol Nutr Metab; 2010 Feb; 35(1):35-9. PubMed ID: 20130664
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparison of skating economy on-ice and on the skating treadmill.
    Nobes KJ; Montgomery DL; Pearsall DJ; Turcotte RA; Lefebvre R; Whittom F
    Can J Appl Physiol; 2003 Feb; 28(1):1-11. PubMed ID: 12649528
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Laboratory- and field-based testing as predictors of skating performance in competitive-level female ice hockey.
    Henriksson T; Vescovi JD; Fjellman-Wiklund A; Gilenstam K
    Open Access J Sports Med; 2016; 7():81-8. PubMed ID: 27574474
    [TBL] [Abstract][Full Text] [Related]  

  • 77. "At-risk" positioning and hip biomechanics of the Peewee ice hockey sprint start.
    Stull JD; Philippon MJ; LaPrade RF
    Am J Sports Med; 2011 Jul; 39 Suppl():29S-35S. PubMed ID: 21709029
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Femoroacetabular Impingement in Elite Ice Hockey Goaltenders: Etiological Implications of On-Ice Hip Mechanics.
    Whiteside D; Deneweth JM; Bedi A; Zernicke RF; Goulet GC
    Am J Sports Med; 2015 Jul; 43(7):1689-97. PubMed ID: 25878118
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Relationship Between Maximal Aerobic Power and Recovery in Elite Ice Hockey Players During a Simulated Game.
    Steeves D; Campagna P
    J Strength Cond Res; 2019 Sep; 33(9):2503-2512. PubMed ID: 29461415
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Updated analysis of changes in locomotor activities across periods in an international ice hockey game.
    Brocherie F; Girard O; Millet GP
    Biol Sport; 2018 Sep; 35(3):261-267. PubMed ID: 30449944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.