These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32150152)

  • 1. Assessment of the Acute Inhalation Toxicity of Airborne Particles by Exposing Cultivated Human Lung Cells at the Air-Liquid Interface.
    Tsoutsoulopoulos A; Gohlsch K; Möhle N; Breit A; Hoffmann S; Krischenowski O; Mückter H; Gudermann T; Thiermann H; Aufderheide M; Steinritz D
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32150152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the CULTEX® Radial Flow System for the assessment of the acute inhalation toxicity of airborne particles.
    Tsoutsoulopoulos A; Gohlsch K; Möhle N; Breit A; Hoffmann S; Krischenowski O; Mückter H; Gudermann T; Thiermann H; Aufderheide M; Steinritz D
    Toxicol In Vitro; 2019 Aug; 58():245-255. PubMed ID: 30890356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the Cultex® Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility.
    Steinritz D; Möhle N; Pohl C; Papritz M; Stenger B; Schmidt A; Kirkpatrick CJ; Thiermann H; Vogel R; Hoffmann S; Aufderheide M
    Chem Biol Interact; 2013 Dec; 206(3):479-90. PubMed ID: 23669118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing.
    Braakhuis HM; He R; Vandebriel RJ; Gremmer ER; Zwart E; Vermeulen JP; Fokkens P; Boere J; Gosens I; Cassee FR
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances.
    Rach J; Budde J; Möhle N; Aufderheide M
    J Appl Toxicol; 2014 May; 34(5):506-15. PubMed ID: 23765558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Troubleshooting methods for toxicity testing of airborne chemicals in vitro.
    Bakand S; Hayes A
    J Pharmacol Toxicol Methods; 2010; 61(2):76-85. PubMed ID: 20117225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the CULTEX
    Aufderheide M; Heller WD; Krischenowski O; Möhle N; Hochrainer D
    Exp Toxicol Pathol; 2017 Jul; 69(6):359-365. PubMed ID: 28262483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity.
    Upadhyay S; Palmberg L
    Toxicol Sci; 2018 Jul; 164(1):21-30. PubMed ID: 29534242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of human lung cells to inhalable substances: a novel test strategy involving clean air exposure periods using whole diluted cigarette mainstream smoke.
    Ritter D; Knebel JW; Aufderheide M
    Inhal Toxicol; 2003 Jan; 15(1):67-84. PubMed ID: 12476361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for the in vitro exposure of human cells to environmental and complex gaseous mixtures: application to various types of atmosphere.
    Aufderheide M; Knebel JW; Ritter D
    Altern Lab Anim; 2002; 30(4):433-41. PubMed ID: 12234248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.
    Afshari A; Zeidler-Erdely PC; McKinney W; Chen BT; Jackson M; Schwegler-Berry D; Friend S; Cumpston A; Cumpston JL; Leonard HD; Meighan TG; Frazer DG; Antonini JM
    Inhal Toxicol; 2014 Oct; 26(12):708-19. PubMed ID: 25140455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material.
    Aufderheide M; Scheffler S; Möhle N; Halter B; Hochrainer D
    Anal Bioanal Chem; 2011 Dec; 401(10):3213-20. PubMed ID: 21695378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular dose of partly soluble Cu particle aerosols at the air-liquid interface using an in vitro lung cell exposure system.
    Elihn K; Cronholm P; Karlsson HL; Midander K; Odnevall Wallinder I; Möller L
    J Aerosol Med Pulm Drug Deliv; 2013 Apr; 26(2):84-93. PubMed ID: 22889118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct exposure methods for testing native atmospheres.
    Aufderheide M
    Exp Toxicol Pathol; 2005 Jul; 57 Suppl 1():213-26. PubMed ID: 16092729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air-liquid interface.
    Aufderheide M; Halter B; Möhle N; Hochrainer D
    Biomed Res Int; 2013; 2013():734137. PubMed ID: 23509768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements.
    Thorne D; Larard S; Baxter A; Meredith C; Gaҫa M
    Toxicol Lett; 2017 Jan; 265():170-178. PubMed ID: 27965004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung cancer risk of airborne particles for Italian population.
    Buonanno G; Giovinco G; Morawska L; Stabile L
    Environ Res; 2015 Oct; 142():443-51. PubMed ID: 26252960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of a co-culture lung model to fine and ultrafine particles of incinerator fly ash at the air-liquid interface.
    Diabaté S; Mülhopt S; Paur HR; Krug HF
    Altern Lab Anim; 2008 Jul; 36(3):285-98. PubMed ID: 18662093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.