These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32150167)

  • 1. Muscle Velocity Recovery Cycles to Examine Muscle Membrane Properties.
    Witt A; Bostock H; Z'Graggen WJ; Tan SV; Kristensen AG; Kristensen RS; Larsen LH; Zeppelin Z; Tankisi H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32150167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle velocity recovery cycles in neurogenic muscles.
    Witt A; Kristensen RS; Fuglsang-Frederiksen A; Pedersen TH; Finnerup NB; Kasch H; Tankisi H
    Clin Neurophysiol; 2019 Sep; 130(9):1520-1527. PubMed ID: 31295721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle velocity recovery cycles: Comparison between surface and needle recordings.
    Z'graggen WJ; Trautmann JP; Boërio D; Bostock H
    Muscle Nerve; 2016 Feb; 53(2):205-8. PubMed ID: 26044702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitability properties of mouse and human skeletal muscle fibres compared by muscle velocity recovery cycles.
    Suetterlin KJ; Männikkö R; Matthews E; Greensmith L; Hanna MG; Bostock H; Tan SV
    Neuromuscul Disord; 2022 Apr; 32(4):347-357. PubMed ID: 35339342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force training induces changes in human muscle membrane properties.
    Z'Graggen WJ; Trautmann JP; Bostock H
    Muscle Nerve; 2016 Jun; 54(1):144-6. PubMed ID: 27104654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcolemmal excitability changes in normal human aging.
    Lee JHF; Boland-Freitas R; Ng K
    Muscle Nerve; 2018 Jun; 57(6):981-988. PubMed ID: 29314071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity recovery cycles of human muscle action potentials and their sensitivity to ischemia.
    Z'graggen WJ; Bostock H
    Muscle Nerve; 2009 May; 39(5):616-26. PubMed ID: 19229874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intermittent high-frequency stimulation on muscle velocity recovery cycle recordings.
    Hochstrasser A; Rodriguez B; Söll N; Bostock H; Z'Graggen WJ
    J Neurophysiol; 2021 Sep; 126(3):736-742. PubMed ID: 34288792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcolemmal excitability in the myotonic dystrophies.
    Boland-Freitas R; Lee J; Howells J; Liang C; Corbett A; Nicholson G; Ng K
    Muscle Nerve; 2018 Apr; 57(4):595-602. PubMed ID: 28881011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity recovery cycles of human muscle action potentials in chronic renal failure.
    Z'Graggen WJ; Aregger F; Farese S; Humm AM; Baumann C; Uehlinger DE; Bostock H
    Clin Neurophysiol; 2010 Jun; 121(6):874-81. PubMed ID: 20181515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early detection of evolving critical illness myopathy with muscle velocity recovery cycles.
    Tankisi A; Pedersen TH; Bostock H; Z'Graggen WJ; Larsen LH; Meldgaard M; Elkmann T; Tankisi H
    Clin Neurophysiol; 2021 Jun; 132(6):1347-1357. PubMed ID: 33676846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo assessment of muscle membrane properties in the sodium channel myotonias.
    Tan SV; Z'Graggen WJ; Hanna MG; Bostock H
    Muscle Nerve; 2018 Apr; 57(4):586-594. PubMed ID: 28877545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of average muscle fiber conduction velocity from simulated surface EMG in pinnate muscles.
    Mesin L; Damiano L; Farina D
    J Neurosci Methods; 2007 Mar; 160(2):327-34. PubMed ID: 17070925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity recovery cycles of human muscle action potentials: repeatability and variability.
    Z'graggen WJ; Troller R; Ackermann KA; Humm AM; Bostock H
    Clin Neurophysiol; 2011 Nov; 122(11):2294-9. PubMed ID: 21555240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo assessment of interictal sarcolemmal membrane properties in hypokalaemic and hyperkalaemic periodic paralysis.
    Tan SV; Suetterlin K; Männikkö R; Matthews E; Hanna MG; Bostock H
    Clin Neurophysiol; 2020 Apr; 131(4):816-827. PubMed ID: 32066100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions.
    Farina D; Falla D
    Muscle Nerve; 2008 May; 37(5):650-8. PubMed ID: 18085714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serum electrolyte concentrations and skeletal muscle excitability in vivo.
    Boland-Freitas R; Lee JH; Ng K
    Clin Neurophysiol; 2022 Mar; 135():13-21. PubMed ID: 35007839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method using F-waves to measure muscle fiber conduction velocity (MFCV).
    Metani H; Tsubahara A; Hiraoka T; Aoyagi Y; Tanaka Y
    Electromyogr Clin Neurophysiol; 2005 Jun; 45(4):245-53. PubMed ID: 16083149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy.
    Allen DC; Arunachalam R; Mills KR
    Muscle Nerve; 2008 Jan; 37(1):14-22. PubMed ID: 17763454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride channels in myotonia congenita assessed by velocity recovery cycles.
    Tan SV; Z'Graggen WJ; Boërio D; Rayan DR; Norwood F; Ruddy D; Howard R; Hanna MG; Bostock H
    Muscle Nerve; 2014 Jun; 49(6):845-57. PubMed ID: 24037712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.