BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 32150369)

  • 1. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression.
    Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ
    ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
    Hu B; DeBruler C; Rhodes Z; Liu TL
    J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage.
    Zhang X; Liu X; Zhang H; Wang Z; Zhang Y; Li G; Li MJ; He G
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48727-48733. PubMed ID: 36257057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.
    Chen M; Liu L; Zhang P; Chen H
    RSC Adv; 2021 Jul; 11(39):24429-24435. PubMed ID: 35479055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
    Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries.
    Chen D; Shen H; Chen D; Chen N; Meng Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries.
    Liu Y; Li Y; Zuo P; Chen Q; Tang G; Sun P; Yang Z; Xu T
    ChemSusChem; 2020 May; 13(9):2245-2249. PubMed ID: 32162480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery.
    Luo J; Hu B; Hu M; Wu W; Liu TL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
    Yan Y; Sitaula P; Odom SA; Vaid TP
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.
    Doris SE; Ward AL; Baskin A; Frischmann PD; Gavvalapalli N; Chénard E; Sevov CS; Prendergast D; Moore JS; Helms BA
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1595-1599. PubMed ID: 28071835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.
    McCormack PM; Koenig GM; Geise GM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Intermolecular Interactions to Enhance the Cyclability of Non-Aqueous, Organic Redox Flow Batteries.
    Zhang L; Liu Y; Chen Y; Zhu Y; Wang R; Dai G; Zhang X; Zhao Y
    Chem Asian J; 2022 Dec; 17(24):e202200901. PubMed ID: 36239205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.
    Li B; Liu J; Nie Z; Wang W; Reed D; Liu J; McGrail P; Sprenkle V
    Nano Lett; 2016 Jul; 16(7):4335-40. PubMed ID: 27267589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.