These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32150536)

  • 1. Detecting critical slowing down in high-dimensional epidemiological systems.
    Brett T; Ajelli M; Liu QH; Krauland MG; Grefenstette JJ; van Panhuis WG; Vespignani A; Drake JM; Rohani P
    PLoS Comput Biol; 2020 Mar; 16(3):e1007679. PubMed ID: 32150536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipating infectious disease re-emergence and elimination: a test of early warning signals using empirically based models.
    Tredennick AT; O'Dea EB; Ferrari MJ; Park AW; Rohani P; Drake JM
    J R Soc Interface; 2022 Aug; 19(193):20220123. PubMed ID: 35919978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipating epidemic transitions with imperfect data.
    Brett TS; O'Dea EB; Marty É; Miller PB; Park AW; Drake JM; Rohani P
    PLoS Comput Biol; 2018 Jun; 14(6):e1006204. PubMed ID: 29883444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects for detecting early warning signals in discrete event sequence data: Application to epidemiological incidence data.
    Southall E; Tildesley MJ; Dyson L
    PLoS Comput Biol; 2020 Sep; 16(9):e1007836. PubMed ID: 32960900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early warning signals of infectious disease transitions: a review.
    Southall E; Brett TS; Tildesley MJ; Dyson L
    J R Soc Interface; 2021 Sep; 18(182):20210555. PubMed ID: 34583561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting infectious disease emergence subject to seasonal forcing.
    Miller PB; O'Dea EB; Rohani P; Drake JM
    Theor Biol Med Model; 2017 Sep; 14(1):17. PubMed ID: 28874167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of early warning signals for disease re-emergence: A case study on COVID-19 data.
    Proverbio D; Kemp F; Magni S; Gonçalves J
    PLoS Comput Biol; 2022 Mar; 18(3):e1009958. PubMed ID: 35353809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting unobserved exposures from seasonal epidemic data.
    Forgoston E; Schwartz IB
    Bull Math Biol; 2013 Sep; 75(9):1450-71. PubMed ID: 23729314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal dynamics of recurrent epidemics.
    Stone L; Olinky R; Huppert A
    Nature; 2007 Mar; 446(7135):533-6. PubMed ID: 17392785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticipating the emergence of infectious diseases.
    Brett TS; Drake JM; Rohani P
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28679666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On signals of phase transitions in salmon population dynamics.
    Krkošek M; Drake JM
    Proc Biol Sci; 2014 Jun; 281(1784):20133221. PubMed ID: 24759855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial early warning signals of social and epidemiological tipping points in a coupled behaviour-disease network.
    Phillips B; Anand M; Bauch CT
    Sci Rep; 2020 May; 10(1):7611. PubMed ID: 32376908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network structural metrics as early warning signals of widespread vaccine refusal in social-epidemiological networks.
    Phillips B; Bauch CT
    J Theor Biol; 2021 Dec; 531():110881. PubMed ID: 34453938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic Models of Emerging Infectious Disease Transmission on Adaptive Random Networks.
    Pipatsart N; Triampo W; Modchang C
    Comput Math Methods Med; 2017; 2017():2403851. PubMed ID: 29075314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early warning signs for saddle-escape transitions in complex networks.
    Kuehn C; Zschaler G; Gross T
    Sci Rep; 2015 Aug; 5():13190. PubMed ID: 26294271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic sensitivity analysis and early warning signals of critical transitions in a tri-stable prey-predator system with noise.
    Garain K; Sarathi Mandal P
    Chaos; 2022 Mar; 32(3):033115. PubMed ID: 35364818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenomic early warning signals for SARS-CoV-2 epidemic waves.
    Drake KO; Boyd O; Franceschi VB; Colquhoun RM; Ellaby NAF; Volz EM
    EBioMedicine; 2024 Feb; 100():104939. PubMed ID: 38194742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When and why direct transmission models can be used for environmentally persistent pathogens.
    Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G
    PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-scale spatial clustering of measles nonvaccination that increases outbreak potential is obscured by aggregated reporting data.
    Masters NB; Eisenberg MC; Delamater PL; Kay M; Boulton ML; Zelner J
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28506-28514. PubMed ID: 33106403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.