These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32150870)

  • 1. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (
    Bhaskarla V; Zinta G; Ford R; Jain M; Varshney RK; Mantri N
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
    Deokar AA; Kondawar V; Jain PK; Karuppayil SM; Raju NL; Vadez V; Varshney RK; Srinivasan R
    BMC Plant Biol; 2011 Apr; 11():70. PubMed ID: 21513527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea.
    Garg R; Shankar R; Thakkar B; Kudapa H; Krishnamurthy L; Mantri N; Varshney RK; Bhatia S; Jain M
    Sci Rep; 2016 Jan; 6():19228. PubMed ID: 26759178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.).
    Mahdavi Mashaki K; Garg V; Nasrollahnezhad Ghomi AA; Kudapa H; Chitikineni A; Zaynali Nezhad K; Yamchi A; Soltanloo H; Varshney RK; Thudi M
    PLoS One; 2018; 13(6):e0199774. PubMed ID: 29953498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress.
    De Domenico S; Bonsegna S; Horres R; Pastor V; Taurino M; Poltronieri P; Imtiaz M; Kahl G; Flors V; Winter P; Santino A
    Plant Physiol Biochem; 2012 Dec; 61():115-22. PubMed ID: 23141673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.).
    Varshney RK; Hiremath PJ; Lekha P; Kashiwagi J; Balaji J; Deokar AA; Vadez V; Xiao Y; Srinivasan R; Gaur PM; Siddique KH; Town CD; Hoisington DA
    BMC Genomics; 2009 Nov; 10():523. PubMed ID: 19912666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.).
    Sachdeva S; Bharadwaj C; Singh RK; Jain PK; Patil BS; Roorkiwal M; Varshney R
    PLoS One; 2020; 15(7):e0234550. PubMed ID: 32663226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative physiological and leaf proteome analysis between drought-tolerant chickpea
    Cevik S; Akpinar G; Yildizli A; Kasap M; Karaosmanoglu K; Unyayar S
    J Biosci; 2019 Mar; 44(1):. PubMed ID: 30837371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.
    Deokar AA; Kondawar V; Kohli D; Aslam M; Jain PK; Karuppayil SM; Varshney RK; Srinivasan R
    Funct Integr Genomics; 2015 Jan; 15(1):27-46. PubMed ID: 25274312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR
    Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation.
    Kumar S; Yadav A; Bano N; Dubey AK; Verma R; Pandey A; Kumar A; Bag S; Srivastava S; Sanyal I
    Funct Integr Genomics; 2022 Apr; 22(2):153-170. PubMed ID: 34988675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum).
    Sagar S; Biswas DK; Singh A
    Gene; 2020 Aug; 753():144797. PubMed ID: 32454180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insights into drought-induced regulation of ribosomal genes through DNA methylation in chickpea.
    Yadav S; Yadava YK; Meena S; Kalwan G; Bharadwaj C; Paul V; Kansal R; Gaikwad K; Jain PK
    Int J Biol Macromol; 2024 May; 266(Pt 2):131380. PubMed ID: 38580022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought.
    Ranjan A; Pandey N; Lakhwani D; Dubey NK; Pathre UV; Sawant SV
    BMC Genomics; 2012 Nov; 13():680. PubMed ID: 23194183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress.
    Hu L; Lv X; Zhang Y; Du W; Fan S; Kong L
    Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa.
    Hiremath PJ; Farmer A; Cannon SB; Woodward J; Kudapa H; Tuteja R; Kumar A; Bhanuprakash A; Mulaosmanovic B; Gujaria N; Krishnamurthy L; Gaur PM; Kavikishor PB; Shah T; Srinivasan R; Lohse M; Xiao Y; Town CD; Cook DR; May GD; Varshney RK
    Plant Biotechnol J; 2011 Oct; 9(8):922-31. PubMed ID: 21615673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea.
    Zaman-Allah M; Jenkinson DM; Vadez V
    J Exp Bot; 2011 Aug; 62(12):4239-52. PubMed ID: 21610017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L.
    Khan N; Bano A; Babar MA
    PLoS One; 2019; 14(3):e0213040. PubMed ID: 30830939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional responses to drought stress in root and leaf of chickpea seedling.
    Wang X; Liu Y; Jia Y; Gu H; Ma H; Yu T; Zhang H; Chen Q; Ma L; Gu A; Zhang J; Shi S; Ma H
    Mol Biol Rep; 2012 Aug; 39(8):8147-58. PubMed ID: 22562393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.