These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32150892)

  • 1. Sustainable Aromatic Aliphatic Polyesters and Polyurethanes Prepared from Vanillin-Derived Diols via Green Catalysis.
    Zhao C; Huang C; Chen Q; Ingram IDV; Zeng X; Ren T; Xie H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32150892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin.
    Mialon L; Vanderhenst R; Pemba AG; Miller SA
    Macromol Rapid Commun; 2011 Sep; 32(17):1386-92. PubMed ID: 21800392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties].
    Shi S; Gu L; Yang Y; Yu H; Chen R; Xiao X; Qiu J
    Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):831-838. PubMed ID: 29019191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis.
    Bai D; Chen Q; Chai Y; Ren T; Huang C; Ingram IDV; North M; Zheng Q; Xie H
    RSC Adv; 2018 Oct; 8(60):34297-34303. PubMed ID: 35548608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis.
    Weinland DH; van der Maas K; Wang Y; Bottega Pergher B; van Putten RJ; Wang B; Gruter GM
    Nat Commun; 2022 Nov; 13(1):7370. PubMed ID: 36450717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of chiral polyesters from polycondensation of multifunctional monomer containing both flexible amino acid and rigid pendant groups with aromatic diols.
    Mallakpour S; Khani M
    Amino Acids; 2010 Aug; 39(3):841-8. PubMed ID: 20217439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols.
    Yang Y; Lu W; Zhang X; Xie W; Cai M; Gross RA
    Biomacromolecules; 2010 Jan; 11(1):259-68. PubMed ID: 20000460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the structural features of biobased linear polyester plasticizers on the crystallization of polylactides.
    Safari M; Kasmi N; Pisani C; Berthé V; Müller AJ; Habibi Y
    Int J Biol Macromol; 2022 Aug; 214():128-139. PubMed ID: 35700846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols.
    Unverferth M; Kreye O; Prohammer A; Meier MA
    Macromol Rapid Commun; 2013 Oct; 34(19):1569-74. PubMed ID: 23996909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferulic Acid as Building Block for the Lipase-Catalyzed Synthesis of Biobased Aromatic Polyesters.
    Bazin A; Avérous L; Pollet E
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties.
    Wu L; Mincheva R; Xu Y; Raquez JM; Dubois P
    Biomacromolecules; 2012 Sep; 13(9):2973-81. PubMed ID: 22830993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes - preparation and properties.
    Zarzyka I; Czerniecka-Kubicka A; Hęclik K; Dobrowolski L; Pyda M; Leś K; Walczak M; Białkowska A; Bakar M
    Acta Bioeng Biomech; 2021; 23(2):91-105. PubMed ID: 34846041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Characterization, and Soil Burial Degradation of Biobased Polyurethanes.
    Zuliani A; Rapisarda M; Chelazzi D; Baglioni P; Rizzarelli P
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid.
    Rajput BS; Hai TAP; Burkart MD
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, extrusion and rheological behaviour of PU/HA composites for biomedical applications.
    Machado HB; Correia RN; Covas JA
    J Mater Sci Mater Med; 2010 Jul; 21(7):2057-66. PubMed ID: 20405172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and Mechanical Behavior of New Transparent Thermoplastic Polyurethane Elastomers Derived from Cycloaliphatic Diisocyanate.
    Puszka A
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial array-based enzymatic polyester synthesis.
    Kim DY; Dordick JS
    Biotechnol Bioeng; 2001 Nov; 76(3):200-6. PubMed ID: 11668454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Thermal Properties, and Rheological Characteristics of Indole-Based Aromatic Polyesters.
    Arza CR; Zhang B
    ACS Omega; 2019 Sep; 4(12):15012-15021. PubMed ID: 31552343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties.
    Djouonkep LDW; Tamo CT; Simo BE; Issah N; Tchouagtie MN; Selabi NBS; Doench I; Kamdem Tamo A; Xie B; Osorio-Madrazo A
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.