These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 32151110)
1. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model. Umegaki T; Tanaka S Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. Yamamoto T; Watanabe K Phys Rev Lett; 2006 Jun; 96(25):255503. PubMed ID: 16907319 [TBL] [Abstract][Full Text] [Related]
3. Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS Lin C; Chen X; Zou X ACS Appl Mater Interfaces; 2019 Jul; 11(28):25547-25555. PubMed ID: 31273972 [TBL] [Abstract][Full Text] [Related]
4. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects. Xie ZX; Chen KQ; Duan W J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066 [TBL] [Abstract][Full Text] [Related]
5. Phonon-interface scattering in multilayer graphene on an amorphous support. Sadeghi MM; Jo I; Shi L Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656 [TBL] [Abstract][Full Text] [Related]
6. Anomalous quantum heat transport in a one-dimensional harmonic chain with random couplings. Yan Y; Zhao H J Phys Condens Matter; 2012 Jul; 24(27):275401. PubMed ID: 22713930 [TBL] [Abstract][Full Text] [Related]
7. The interfacial thermal conductance spectrum in nonequilibrium molecular dynamics simulations considering anharmonicity, asymmetry and quantum effects. Xu Y; Yang L; Zhou Y Phys Chem Chem Phys; 2022 Oct; 24(39):24503-24513. PubMed ID: 36193724 [TBL] [Abstract][Full Text] [Related]
8. Engineering thermal conductance using a two-dimensional phononic crystal. Zen N; Puurtinen TA; Isotalo TJ; Chaudhuri S; Maasilta IJ Nat Commun; 2014 Mar; 5():3435. PubMed ID: 24647049 [TBL] [Abstract][Full Text] [Related]
9. Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation. Zobeiri H; Hunter N; Wang R; Wang T; Wang X Adv Sci (Weinh); 2021 Jun; 8(12):2004712. PubMed ID: 34194932 [TBL] [Abstract][Full Text] [Related]
10. Nonequilibrium Green's function method for phonon heat transport in quantum system. Zeng YJ; Ding ZK; Pan H; Feng YX; Chen KQ J Phys Condens Matter; 2022 Mar; 34(22):. PubMed ID: 35263716 [TBL] [Abstract][Full Text] [Related]
11. The reservoir area dependent thermal transport at the nanoscale interface. Liu C; Fu Q; Gu Z; Lu P Phys Chem Chem Phys; 2020 Oct; 22(38):22016-22022. PubMed ID: 32975247 [TBL] [Abstract][Full Text] [Related]
12. Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains. Fang J; Qian X; Zhao CY; Li B; Gu X Phys Rev E; 2020 Feb; 101(2-1):022133. PubMed ID: 32168675 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon. Cheng C; Wang S J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038 [TBL] [Abstract][Full Text] [Related]
14. Tuning the polarized quantum phonon transmission in graphene nanoribbons. Scuracchio P; Dobry A; Costamagna S; Peeters FM Nanotechnology; 2015 Jul; 26(30):305401. PubMed ID: 26150409 [TBL] [Abstract][Full Text] [Related]
15. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission. Zheng W; Huang B; Li H; Koh YK ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044 [TBL] [Abstract][Full Text] [Related]
16. Moiré Pattern Controlled Phonon Polarizer Based on Twisted Graphene. Qin Z; Dai L; Li M; Li S; Wu H; White KE; Gani G; Weiss PS; Hu Y Adv Mater; 2024 Jun; 36(24):e2312176. PubMed ID: 38429904 [TBL] [Abstract][Full Text] [Related]
18. Thermal transport across metal–insulator interface via electron–phonon interaction. Zhang L; Lü JT; Wang JS; Li B J Phys Condens Matter; 2013 Nov; 25(44):445801. PubMed ID: 24131959 [TBL] [Abstract][Full Text] [Related]
19. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study. Hata T; Kawai H; Ohto T; Yamashita K J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007 [TBL] [Abstract][Full Text] [Related]
20. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function. Dahnovsky Y J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]