BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 32151151)

  • 1. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both?
    Shi T; Dansen TB
    Antioxid Redox Signal; 2020 Oct; 33(12):839-859. PubMed ID: 32151151
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction.
    Qian W; Kumar N; Roginskaya V; Fouquerel E; Opresko PL; Shiva S; Watkins SC; Kolodieznyi D; Bruchez MP; Van Houten B
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18435-18444. PubMed ID: 31451640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutaredoxin-1 Silencing Induces Cell Senescence via p53/p21/p16 Signaling Axis.
    Yang F; Yi M; Liu Y; Wang Q; Hu Y; Deng H
    J Proteome Res; 2018 Mar; 17(3):1091-1100. PubMed ID: 29356545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.
    Schweikl H; Petzel C; Bolay C; Hiller KA; Buchalla W; Krifka S
    Biomaterials; 2014 Mar; 35(9):2890-904. PubMed ID: 24411679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence.
    Hafsi H; Hainaut P
    Antioxid Redox Signal; 2011 Sep; 15(6):1655-67. PubMed ID: 21194382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis.
    Ye J; Wang S; Leonard SS; Sun Y; Butterworth L; Antonini J; Ding M; Rojanasakul Y; Vallyathan V; Castranova V; Shi X
    J Biol Chem; 1999 Dec; 274(49):34974-80. PubMed ID: 10574974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations.
    Yeh YT; Yeh H; Su SH; Lin JS; Lee KJ; Shyu HW; Chen ZF; Huang SY; Su SJ
    Free Radic Biol Med; 2014 Sep; 74():1-13. PubMed ID: 24952138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA- and UVB-induced apoptosis.
    Wäster PK; Ollinger KM
    J Invest Dermatol; 2009 Jul; 129(7):1769-81. PubMed ID: 19158844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.
    Resseguie EA; Brookes PS; O'Reilly MA
    Exp Lung Res; 2017; 43(6-7):229-239. PubMed ID: 28749708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells.
    Piccirillo S; Filomeni G; Brüne B; Rotilio G; Ciriolo MR
    J Biol Chem; 2009 Oct; 284(40):27721-33. PubMed ID: 19643729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis.
    Trinei M; Giorgio M; Cicalese A; Barozzi S; Ventura A; Migliaccio E; Milia E; Padura IM; Raker VA; Maccarana M; Petronilli V; Minucci S; Bernardi P; Lanfrancone L; Pelicci PG
    Oncogene; 2002 May; 21(24):3872-8. PubMed ID: 12032825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of p53 during hypoxia.
    Chandel NS; Vander Heiden MG; Thompson CB; Schumacker PT
    Oncogene; 2000 Aug; 19(34):3840-8. PubMed ID: 10951577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents.
    Achanta G; Huang P
    Cancer Res; 2004 Sep; 64(17):6233-9. PubMed ID: 15342409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROS and p53: a versatile partnership.
    Liu B; Chen Y; St Clair DK
    Free Radic Biol Med; 2008 Apr; 44(8):1529-35. PubMed ID: 18275858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of induced reactive oxygen species in p53-mediated cell fate decisions.
    Macip S; Igarashi M; Berggren P; Yu J; Lee SW; Aaronson SA
    Mol Cell Biol; 2003 Dec; 23(23):8576-85. PubMed ID: 14612402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of p53, redox effectors regulated by p53: a subtle balance.
    Maillet A; Pervaiz S
    Antioxid Redox Signal; 2012 Jun; 16(11):1285-94. PubMed ID: 22117613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc binding and redox control of p53 structure and function.
    Hainaut P; Mann K
    Antioxid Redox Signal; 2001 Aug; 3(4):611-23. PubMed ID: 11554448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: contribution of radiosensitivity and genome instability].
    Mikhaĭlov VF; Mazurik VK; Burlakova EB
    Radiats Biol Radioecol; 2003; 43(1):5-18. PubMed ID: 12677653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.