BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 32151155)

  • 21. Will an algal CO2-concentrating mechanism work in higher plants?
    Meyer MT; McCormick AJ; Griffiths H
    Curr Opin Plant Biol; 2016 Jun; 31():181-8. PubMed ID: 27194106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional reconstitution of a bacterial CO
    Flamholz AI; Dugan E; Blikstad C; Gleizer S; Ben-Nissan R; Amram S; Antonovsky N; Ravishankar S; Noor E; Bar-Even A; Milo R; Savage DF
    Elife; 2020 Oct; 9():. PubMed ID: 33084575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlative adaptation between Rubisco and CO
    Capó-Bauçà S; Iñiguez C; Aguiló-Nicolau P; Galmés J
    Nat Plants; 2022 Jun; 8(6):706-716. PubMed ID: 35729266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation and genetic intervention of CO
    Mallikarjuna K; Narendra K; Ragalatha R; Rao BJ
    J Biosci; 2020; 45():. PubMed ID: 33051409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis.
    Aguiló-Nicolau P; Galmés J; Fais G; Capó-Bauçà S; Cao G; Iñiguez C
    Photosynth Res; 2023 May; 156(2):231-245. PubMed ID: 36941458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T; Cheng SLH; Lai SK; Li HY; Mueller-Cajar O
    Nat Commun; 2018 Nov; 9(1):5076. PubMed ID: 30498228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A faster Rubisco with potential to increase photosynthesis in crops.
    Lin MT; Occhialini A; Andralojc PJ; Parry MA; Hanson MR
    Nature; 2014 Sep; 513(7519):547-50. PubMed ID: 25231869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The challenge of engineering Rubisco for improving photosynthesis.
    Gionfriddo M; Zang K; Hayer-Hartl M
    FEBS Lett; 2023 Jul; 597(13):1679-1680. PubMed ID: 37334940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon assimilation in upper subtidal macroalgae is determined by an inverse correlation between Rubisco carboxylation efficiency and CO
    Capó-Bauçà S; Galmés J; Aguiló-Nicolau P; Ramis-Pozuelo S; Iñiguez C
    New Phytol; 2023 Mar; 237(6):2027-2038. PubMed ID: 36385703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis.
    Chen T; Hojka M; Davey P; Sun Y; Dykes GF; Zhou F; Lawson T; Nixon PJ; Lin Y; Liu LN
    Nat Commun; 2023 Apr; 14(1):2118. PubMed ID: 37185249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis.
    McGrath JM; Long SP
    Plant Physiol; 2014 Apr; 164(4):2247-61. PubMed ID: 24550242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.
    Mackinder LC; Meyer MT; Mettler-Altmann T; Chen VK; Mitchell MC; Caspari O; Freeman Rosenzweig ES; Pallesen L; Reeves G; Itakura A; Roth R; Sommer F; Geimer S; Mühlhaus T; Schroda M; Goodenough U; Stitt M; Griffiths H; Jonikas MC
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5958-63. PubMed ID: 27166422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.
    Goudet MMM; Orr DJ; Melkonian M; Müller KH; Meyer MT; Carmo-Silva E; Griffiths H
    New Phytol; 2020 Aug; 227(3):810-823. PubMed ID: 32249430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering carbon fixation with artificial protein organelles.
    Giessen TW; Silver PA
    Curr Opin Biotechnol; 2017 Aug; 46():42-50. PubMed ID: 28126670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO
    Iñiguez C; Capó-Bauçà S; Niinemets Ü; Stoll H; Aguiló-Nicolau P; Galmés J
    Plant J; 2020 Feb; 101(4):897-918. PubMed ID: 31820505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyanobacterial α-carboxysome carbonic anhydrase is allosterically regulated by the Rubisco substrate RuBP.
    Pulsford SB; Outram MA; Förster B; Rhodes T; Williams SJ; Badger MR; Price GD; Jackson CJ; Long BM
    Sci Adv; 2024 May; 10(19):eadk7283. PubMed ID: 38728392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S; Crans VL; Jonikas MC
    Plant Cell; 2023 Sep; 35(9):3236-3259. PubMed ID: 37279536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved
    Wilson RH; Martin-Avila E; Conlan C; Whitney SM
    J Biol Chem; 2018 Jan; 293(1):18-27. PubMed ID: 28986448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.