These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 32151315)
21. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis. Vulevic B; Correia JJ Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581 [TBL] [Abstract][Full Text] [Related]
22. An atomistic view of microtubule stabilization by GTP. Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730 [TBL] [Abstract][Full Text] [Related]
23. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948 [TBL] [Abstract][Full Text] [Related]
24. Tubulin rings: which way do they curve? Nogales E; Wang HW; Niederstrasser H Curr Opin Struct Biol; 2003 Apr; 13(2):256-61. PubMed ID: 12727521 [TBL] [Abstract][Full Text] [Related]
25. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Carlier MF; Didry D; Pantaloni D Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597 [TBL] [Abstract][Full Text] [Related]
26. Microtubule dynamic instability does not result from stabilization of microtubules by tubulin-GDP-Pi subunits. Caplow M; Shanks J Biochemistry; 1998 Sep; 37(37):12994-3002. PubMed ID: 9737880 [TBL] [Abstract][Full Text] [Related]
27. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Martin SR; Schilstra MJ; Bayley PM Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889 [TBL] [Abstract][Full Text] [Related]
31. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation. Carlier MF; Didry D; Pantaloni D Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805 [TBL] [Abstract][Full Text] [Related]
32. Mechanochemical model of microtubule structure and self-assembly kinetics. VanBuren V; Cassimeris L; Odde DJ Biophys J; 2005 Nov; 89(5):2911-26. PubMed ID: 15951387 [TBL] [Abstract][Full Text] [Related]
33. Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly. Ayoub AT; Klobukowski M; Tuszynski JA PLoS Comput Biol; 2015 Jun; 11(6):e1004313. PubMed ID: 26030285 [TBL] [Abstract][Full Text] [Related]
34. Unveiling the catalytic mechanism of GTP hydrolysis in microtubules. Beckett D; Voth GA Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2305899120. PubMed ID: 37364095 [TBL] [Abstract][Full Text] [Related]
35. Structural microtubule cap: stability, catastrophe, rescue, and third state. Jánosi IM; Chrétien D; Flyvbjerg H Biophys J; 2002 Sep; 83(3):1317-30. PubMed ID: 12202357 [TBL] [Abstract][Full Text] [Related]
36. Atomistic Basis of Microtubule Dynamic Instability Assessed Via Multiscale Modeling. Hemmat M; Odde DJ Ann Biomed Eng; 2021 Jul; 49(7):1716-1734. PubMed ID: 33537926 [TBL] [Abstract][Full Text] [Related]
38. Structural mass spectrometry of the alpha beta-tubulin dimer supports a revised model of microtubule assembly. Bennett MJ; Chik JK; Slysz GW; Luchko T; Tuszynski J; Sackett DL; Schriemer DC Biochemistry; 2009 Jun; 48(22):4858-70. PubMed ID: 19388626 [TBL] [Abstract][Full Text] [Related]
39. Microtubule instability driven by longitudinal and lateral strain propagation. Igaev M; Grubmüller H PLoS Comput Biol; 2020 Sep; 16(9):e1008132. PubMed ID: 32877399 [TBL] [Abstract][Full Text] [Related]
40. Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism. Stewart RJ; Farrell KW; Wilson L Biochemistry; 1990 Jul; 29(27):6489-98. PubMed ID: 2207090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]