These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32151413)

  • 1. Simulation of spatial thermal gradient gas chromatography.
    Leppert J; Müller PJ; Chopra MD; Blumberg LM; Boeker P
    J Chromatogr A; 2020 Jun; 1620():460985. PubMed ID: 32151413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the effects of negative thermal gradients on separation performance of gas chromatography.
    Leppert J; Blumberg LM; Wüst M; Boeker P
    J Chromatogr A; 2021 Mar; 1640():461943. PubMed ID: 33556678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast thermal desorption unit for micro thermal desorption tubes, Part I: Development of the system and proof of concept measurements with hyper-fast gas chromatography.
    Chopra MD; Menger FA; Duong B; Wüst M; Boeker P
    J Chromatogr A; 2024 Aug; 1730():465039. PubMed ID: 38901296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow field thermal gradient gas chromatography.
    Boeker P; Leppert J
    Anal Chem; 2015 Sep; 87(17):9033-41. PubMed ID: 26235451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating Capillary Gas Chromatographic Separations including Thermal Gradient Conditions.
    Tolley HD; Avila S; Iverson BD; Foster AR; Hawkins AR; Tolley SE; Lee ML
    Anal Chem; 2021 Feb; 93(4):2291-2298. PubMed ID: 33405883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of retention parameters from temperature programmed gas chromatography.
    Leppert J; Brehmer T; Wüst M; Boeker P
    J Chromatogr A; 2023 Jun; 1699():464008. PubMed ID: 37104945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving thermal gradients in gas chromatography.
    Tolley HD; Tolley SE; Wang A; Lee ML
    J Chromatogr A; 2014 Dec; 1374():189-198. PubMed ID: 25435463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of retention times and efficiency in linear gradient programmed pressure analysis on capillary columns.
    Vezzani S; Moretti P; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):141-50. PubMed ID: 15560490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution prediction and optimization of temperature programme in comprehensive two-dimensional gas chromatography.
    Lu X; Kong H; Li H; Ma C; Tian J; Xu G
    J Chromatogr A; 2005 Sep; 1086(1-2):175-84. PubMed ID: 16130671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Dynamic Thermal Gradient to Temperature-Programmed Conditions in Gas Chromatography Using a Stochastic Transport Model.
    Avila S; Tolley HD; Iverson BD; Hawkins AR; Johnson SL; Lee ML
    Anal Chem; 2021 Aug; 93(34):11785-11791. PubMed ID: 34406737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperfast Flow-Field Thermal Gradient GC/MS of Explosives with Reduced Elution Temperatures.
    Leppert J; Härtel M; Klapötke TM; Boeker P
    Anal Chem; 2018 Jul; 90(14):8404-8411. PubMed ID: 29901980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between characteristic temperature and elution temperature in temperature programmed gas chromatography - Part II: Influence of column properties.
    Brehmer T; Boeker P; Wüst M; Leppert J
    J Chromatogr A; 2024 Aug; 1728():464997. PubMed ID: 38821031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual solvent analysis with hyper-fast gas chromatography-mass spectrometry and a liquid carbon dioxide cryofocusing in less than 90 s.
    Chopra MD; Müller PJ; Leppert J; Wüst M; Boeker P
    J Chromatogr A; 2021 Jul; 1648():462179. PubMed ID: 33992995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation of gas chromatographic separation based on random diffusion].
    Sun Y; Wang L; Yin Z; Zhao J
    Se Pu; 2022 Mar; 40(3):281-288. PubMed ID: 35243838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of gas chromatographic separations and estimation of distribution-centric retention parameters using linear solvation energy relationships.
    Brehmer T; Duong B; Boeker P; Wüst M; Leppert J
    J Chromatogr A; 2024 Feb; 1717():464665. PubMed ID: 38281342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on solute partition.
    Burel A; Vaccaro M; Cartigny Y; Tisse S; Coquerel G; Cardinael P
    J Chromatogr A; 2017 Feb; 1485():101-119. PubMed ID: 28108081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic thermal gradient gas chromatography.
    Contreras JA; Wang A; Rockwood AL; Tolley HD; Lee ML
    J Chromatogr A; 2013 Aug; 1302():143-51. PubMed ID: 23845755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.
    Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE
    J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of chromatographic conditions on separation in comprehensive gas chromatography.
    Ong R; Marriott P; Morrison P; Haglund P
    J Chromatogr A; 2002 Jul; 962(1-2):135-52. PubMed ID: 12198958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention models for programmed gas chromatography.
    Castello G; Moretti P; Vezzani S
    J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.