These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32151413)

  • 21. Peak focusing based on stationary phase thickness gradient.
    Li MW; Zhu H; Zhou M; She J; Li Z; Kurabayashi K; Fan X
    J Chromatogr A; 2020 Mar; 1614():460737. PubMed ID: 31831145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Simulation of gas chromatographic peak motion process].
    Wu ZY; Fang F; Zhou JK
    Se Pu; 1999 Nov; 17(6):544-6. PubMed ID: 12552686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peak sweeping and gating using thermal gradient gas chromatography.
    Contreras JA; Rockwood AL; Tolley HD; Lee ML
    J Chromatogr A; 2013 Feb; 1278():160-5. PubMed ID: 23352829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.
    Freye CE; Mu L; Synovec RE
    J Chromatogr A; 2015 Dec; 1424():127-33. PubMed ID: 26603995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equation for evolution of temporal width of a solute band migrating in chromatographic column.
    Leppert J; Blumberg LM; Boeker P
    J Chromatogr A; 2020 Feb; 1612():460645. PubMed ID: 31679714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvation parameter model of comprehensive two-dimensional gas chromatography separations.
    Seeley JV; Libby EM; Edwards KA; Seeley SK
    J Chromatogr A; 2009 Mar; 1216(10):1650-7. PubMed ID: 18687438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients.
    Jeong LN; Rutan SC
    J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Static Thermal Gradient to Isothermal Conditions in Gas Chromatography Using a Stochastic Transport Model.
    Avila S; Tolley HD; Iverson BD; Hawkins AR; Porter NL; Johnson SL; Lee ED; Lee ML
    Anal Chem; 2021 May; 93(17):6739-6745. PubMed ID: 33885280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.
    Ghosh A; Johnson JE; Nuss JG; Stark BA; Hawkins AR; Tolley LT; Iverson BD; Tolley HD; Lee ML
    J Chromatogr A; 2017 Sep; 1517():134-141. PubMed ID: 28855092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Half-width plots, a simple tool to predict peak shape, reveal column kinetics and characterise chromatographic columns in liquid chromatography: state of the art and new results.
    Baeza-Baeza JJ; Ruiz-Ángel MJ; García-Álvarez-Coque MC; Carda-Broch S
    J Chromatogr A; 2013 Nov; 1314():142-53. PubMed ID: 24055228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2016 Nov; 1474():95-108. PubMed ID: 27836226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of retention times in linear gradient temperature and pressure programmed analysis on capillary columns.
    Vezzani S; Moretti P; Mazzi M; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):151-8. PubMed ID: 15560491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming.
    Reid VR; McBrady AD; Synovec RE
    J Chromatogr A; 2007 May; 1148(2):236-43. PubMed ID: 17386929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental- and simulation-based investigations of coupling a mobile phase gradient with a continuous stationary phase gradient.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2019 Sep; 1602():237-245. PubMed ID: 31147155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elution parameters in constant-pressure, single-ramp temperature-programmed gas chromatography.
    Blumberg LM; Klee MS
    J Chromatogr A; 2001 May; 918(1):113-20. PubMed ID: 11403437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic plots for programmed temperature gas chromatography.
    Jespers S; Roeleveld K; Lynen F; Broeckhoven K; Desmet G
    J Chromatogr A; 2016 Jun; 1450():94-100. PubMed ID: 27179678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions.
    Wu L; Cho IK; Li Y; Zhang G; Li QX
    J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution to linearly programmed temperature gas chromatography. Further application of the Van den Dool-Kratz equation, and a new utilization of the Sadtler retention index library.
    Santiuste JM; Tarján G; Ullrich E; Takács JM
    J Chromatogr A; 2008 Feb; 1181(1-2):103-15. PubMed ID: 18201710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Dead time determination of the second dimension in a comprehensive two-dimensional gas chromatography].
    Kong H; Ye F; Lu X; Dong M; Guo L; Xu G
    Se Pu; 2005 Jan; 23(1):37-40. PubMed ID: 15881364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast GC-FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction.
    Jumtee K; Bamba T; Fukusaki E
    J Sep Sci; 2009 Jul; 32(13):2296-304. PubMed ID: 19569110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.