These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 32151745)
1. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Rhee SG; Woo HA Free Radic Biol Med; 2020 May; 152():107-115. PubMed ID: 32151745 [TBL] [Abstract][Full Text] [Related]
2. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. Woo HA; Jeong W; Chang TS; Park KJ; Park SJ; Yang JS; Rhee SG J Biol Chem; 2005 Feb; 280(5):3125-8. PubMed ID: 15590625 [TBL] [Abstract][Full Text] [Related]
3. Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin. Park JW; Mieyal JJ; Rhee SG; Chock PB J Biol Chem; 2009 Aug; 284(35):23364-74. PubMed ID: 19561357 [TBL] [Abstract][Full Text] [Related]
4. The Role of Peroxiredoxins in the Transduction of H Rhee SG; Woo HA; Kang D Antioxid Redox Signal; 2018 Mar; 28(7):537-557. PubMed ID: 28587524 [TBL] [Abstract][Full Text] [Related]
5. Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II. Seo JH; Lim JC; Lee DY; Kim KS; Piszczek G; Nam HW; Kim YS; Ahn T; Yun CH; Kim K; Chock PB; Chae HZ J Biol Chem; 2009 May; 284(20):13455-13465. PubMed ID: 19286652 [TBL] [Abstract][Full Text] [Related]
6. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Rhee SG; Jeong W; Chang TS; Woo HA Kidney Int Suppl; 2007 Aug; (106):S3-8. PubMed ID: 17653208 [TBL] [Abstract][Full Text] [Related]
7. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Rhee SG; Kil IS Annu Rev Biochem; 2017 Jun; 86():749-775. PubMed ID: 28226215 [TBL] [Abstract][Full Text] [Related]
8. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. Banerjee M; Chakravarty D; Ballal A BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452 [TBL] [Abstract][Full Text] [Related]
9. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. Rhee SG; Woo HA Antioxid Redox Signal; 2011 Aug; 15(3):781-94. PubMed ID: 20919930 [TBL] [Abstract][Full Text] [Related]
10. Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III. Noh YH; Baek JY; Jeong W; Rhee SG; Chang TS J Biol Chem; 2009 Mar; 284(13):8470-7. PubMed ID: 19176523 [TBL] [Abstract][Full Text] [Related]
11. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum. Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811 [TBL] [Abstract][Full Text] [Related]
12. The 1-Cys peroxiredoxin, a regulator of seed dormancy, functions as a molecular chaperone under oxidative stress conditions. Kim SY; Paeng SK; Nawkar GM; Maibam P; Lee ES; Kim KS; Lee DH; Park DJ; Kang SB; Kim MR; Lee JH; Kim YH; Kim WY; Kang CH Plant Sci; 2011 Aug; 181(2):119-24. PubMed ID: 21683876 [TBL] [Abstract][Full Text] [Related]
13. Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1. Lee ES; Kang CH; Park JH; Lee SY Antioxid Redox Signal; 2018 Mar; 28(7):625-639. PubMed ID: 29113450 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. Kang SW; Baines IC; Rhee SG J Biol Chem; 1998 Mar; 273(11):6303-11. PubMed ID: 9497358 [TBL] [Abstract][Full Text] [Related]
15. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. Rhee SG; Woo HA; Kil IS; Bae SH J Biol Chem; 2012 Feb; 287(7):4403-10. PubMed ID: 22147704 [TBL] [Abstract][Full Text] [Related]
16. Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer. Noguera-Mazon V; Lemoine J; Walker O; Rouhier N; Salvador A; Jacquot JP; Lancelin JM; Krimm I J Biol Chem; 2006 Oct; 281(42):31736-42. PubMed ID: 16916801 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. Yang KS; Kang SW; Woo HA; Hwang SC; Chae HZ; Kim K; Rhee SG J Biol Chem; 2002 Oct; 277(41):38029-36. PubMed ID: 12161445 [TBL] [Abstract][Full Text] [Related]
18. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Chae HZ; Oubrahim H; Park JW; Rhee SG; Chock PB Antioxid Redox Signal; 2012 Mar; 16(6):506-23. PubMed ID: 22114845 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related]
20. Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress. Pascual MB; Mata-Cabana A; Florencio FJ; Lindahl M; Cejudo FJ J Biol Chem; 2010 Nov; 285(45):34485-92. PubMed ID: 20736168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]