BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32151809)

  • 1. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?
    Goren AY; Kobya M; Khataee A
    Sci Total Environ; 2022 Feb; 808():152135. PubMed ID: 34864021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions.
    Goren AY; Kobya M
    Chemosphere; 2021 Jan; 263():128253. PubMed ID: 33297198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.
    Guzmán A; Nava JL; Coreño O; Rodríguez I; Gutiérrez S
    Chemosphere; 2016 Feb; 144():2113-20. PubMed ID: 26583293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor.
    Castañeda LF; Coreño O; Nava JL; Carreño G
    Chemosphere; 2020 Apr; 244():125417. PubMed ID: 31809937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process.
    Zhao X; Zhang B; Liu H; Qu J
    Chemosphere; 2011 Apr; 83(5):726-9. PubMed ID: 21392815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of arsenic from water by electrocoagulation.
    Ratna Kumar P; Chaudhari S; Khilar KC; Mahajan SP
    Chemosphere; 2004 Jun; 55(9):1245-52. PubMed ID: 15081765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
    Amrose S; Gadgil A; Srinivasan V; Kowolik K; Muller M; Huang J; Kostecki R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1019-30. PubMed ID: 23573922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.
    van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J
    Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack.
    Rosales M; Coreño O; Nava JL
    Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations.
    Mena VF; Betancor-Abreu A; González S; Delgado S; Souto RM; Santana JJ
    J Environ Manage; 2019 Sep; 246():472-483. PubMed ID: 31200181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of dissolved organic matter during groundwater arsenite removal using air cathode iron electrocoagulation.
    Yuan Y; Chen J; Zhang H; Wu Y; Xiao Y; Huang W; Wang Y; Tang J; Zhang F
    Chemosphere; 2024 Jun; 358():142083. PubMed ID: 38701859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abatement of hydrated silica, arsenic, and coexisting ions from groundwater by electrocoagulation using iron electrodes.
    Valentín-Reyes J; Trejo DB; Coreño O; Nava JL
    Chemosphere; 2022 Jun; 297():134144. PubMed ID: 35227747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.