BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32151872)

  • 1. Ecological criteria for zinc in Chinese soil as affected by soil properties.
    Wan Y; Jiang B; Wei D; Ma Y
    Ecotoxicol Environ Saf; 2020 May; 194():110418. PubMed ID: 32151872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil ecological criteria for nickel as a function of soil properties.
    Wang X; Wei D; Ma Y; McLaughlin MJ
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2137-2146. PubMed ID: 29110234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.
    Wang X; Wei D; Ma Y; McLaughlin MJ
    PLoS One; 2015; 10(7):e0133941. PubMed ID: 26207783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological risk thresholds for Zn in Chinese soils.
    Zhao S; Qin L; Wang L; Sun X; Yu L; Wang M; Chen S
    Sci Total Environ; 2022 Aug; 833():155182. PubMed ID: 35417729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils.
    Lu T; Li J; Wang X; Ma Y; Smolders E; Zhu N
    J Environ Manage; 2016 Dec; 183(Pt 3):945-951. PubMed ID: 27681873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential ecological risk assessment and predicting zinc accumulation in soils.
    Baran A; Wieczorek J; Mazurek R; Urbański K; Klimkowicz-Pawlas A
    Environ Geochem Health; 2018 Feb; 40(1):435-450. PubMed ID: 28229257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest.
    Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y
    Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China.
    Liu K; Li C; Tang S; Shang G; Yu F; Li Y
    Chemosphere; 2020 Jul; 251():126415. PubMed ID: 32169698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids.
    Heemsbergen DA; Warne MS; Broos K; Bell M; Nash D; McLaughlin M; Whatmuff M; Barry G; Pritchard D; Penney N
    Sci Total Environ; 2009 Apr; 407(8):2546-56. PubMed ID: 19215964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.
    Hale B; Gopalapillai Y; Pellegrino A; Jennett T; Kikkert J; Lau W; Schlekat C; McLaughlin MJ
    Environ Pollut; 2017 Dec; 231(Pt 1):165-172. PubMed ID: 28800485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of aging time on the form transformation and eco-toxicity threshold (ECx) of added Zn in typical China soils].
    Lin L; Chen SB; Liu JF; Ma YB
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2025-32. PubMed ID: 24175536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating bioavailability and soil aging in the derivation of DDT criteria for agricultural soils using crop species sensitivity distributions.
    Li H; Sun Z; Qiu Y; Yu X; Han X; Ma Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():527-532. PubMed ID: 30223165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging of zinc added to soils with a wide range of different properties: Factors and modeling.
    Zhang X; Jiang B; Ma Y
    Environ Toxicol Chem; 2017 Nov; 36(11):2925-2933. PubMed ID: 28631838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.
    Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R
    Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source.
    Owsianiak M; Holm PE; Fantke P; Christiansen KS; Borggaard OK; Hauschild MZ
    Environ Pollut; 2015 Nov; 206():400-10. PubMed ID: 26253314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and chemical assessments of zinc ageing in field soils.
    Donner E; Broos K; Heemsbergen D; Warne MS; McLaughlin MJ; Hodson ME; Nortcliff S
    Environ Pollut; 2010 Jan; 158(1):339-45. PubMed ID: 19632021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for real-time monitoring of soil ecological toxicity - Detection of earthworm motion using a vibration sensor.
    Lee WC; Lee SW; Jeon JH; Jung H; Kim SO
    Ecotoxicol Environ Saf; 2019 Dec; 185():109677. PubMed ID: 31563747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.
    Lu S; Wang Y; Teng Y; Yu X
    Environ Monit Assess; 2015 Oct; 187(10):627. PubMed ID: 26373302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area.
    Hou S; Zheng N; Tang L; Ji X; Li Y
    Environ Monit Assess; 2019 Sep; 191(10):634. PubMed ID: 31522295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures].
    Shang HP; Li Y; Zhang T; Su DC
    Huan Jing Ke Xue; 2015 Jan; 36(1):314-24. PubMed ID: 25898681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.