These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32151931)

  • 41. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: A singlet oxygen-dominated oxidation process.
    Liu F; Li W; Wu D; Tian T; Wu JF; Dong ZM; Zhao GC
    J Colloid Interface Sci; 2020 Jul; 572():318-327. PubMed ID: 32272310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcined CoAl-layered double hydroxide as a heterogeneous catalyst for the degradation of acetaminophen and rhodamine B: activity, stability, and mechanism.
    Zhu J; Zhu Z; Zhang H; Lu H; Qiu Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33329-33340. PubMed ID: 31520393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline.
    Cherifi Y; Addad A; Vezin H; Barras A; Ouddane B; Chaouchi A; Szunerits S; Boukherroub R
    Ultrason Sonochem; 2019 Apr; 52():164-175. PubMed ID: 30477793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Yolk-shell ZIFs@SiO
    Li X; Yan X; Hu X; Feng R; Zhou M
    J Environ Manage; 2020 May; 262():110299. PubMed ID: 32094105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment.
    Zhou S; Yu Y; Zhang W; Meng X; Luo J; Deng L; Shi Z; Crittenden J
    Environ Sci Technol; 2018 Apr; 52(7):4305-4312. PubMed ID: 29513515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced degradation of atrazine by nanoscale LaFe
    Wang G; Cheng C; Zhu J; Wang L; Gao S; Xia X
    Sci Total Environ; 2019 Jul; 673():565-575. PubMed ID: 30999097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.
    Yoon IH; Yoo G; Hong HJ; Kim J; Kim MG; Choi WK; Yang JW
    Chemosphere; 2016 Feb; 145():409-15. PubMed ID: 26692518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of peroxymonosulfate by palygorskite supported Co-Fe for water treatment.
    Xia W; Wu Q; Huang R; Tao Y; Wang K; Wu S; Wang S; Wang M; Li Q
    RSC Adv; 2023 Apr; 13(18):12483-12494. PubMed ID: 37091603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of aerobic atrazine degradation with zero valent aluminum and zero valent iron.
    Shen W; Kang H; Ai Z
    J Hazard Mater; 2018 Sep; 357():408-414. PubMed ID: 29913373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals.
    Guo F; Wang K; Lu J; Chen J; Dong X; Xia D; Zhang A; Wang Q
    Chemosphere; 2019 Mar; 218():1071-1081. PubMed ID: 30609486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reductive performance of ZVI/Cu polyscale particle to decolorize reactive black 5.
    Deng H; Zhang C; Jiang Y; Ma Z; Mao Z
    Microsc Res Tech; 2019 Feb; 82(2):134-143. PubMed ID: 30549140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Base Activation of Peroxymonosulfate for the Degradation of Ciprofloxacin in Water].
    Ge YJ; Cai XW; Lin H; Xu MY; Shen YT; Zhou D; Qian MJ; Deng J
    Huan Jing Ke Xue; 2017 Dec; 38(12):5116-5123. PubMed ID: 29964571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Ag-Cu co-doping sponge iron-based trimetal for boosting simultaneous degradation of combined pollutants.
    Xing W; Xu X; Zhang M; Zhang X; Shi Y; Nie P; Ju Y
    J Hazard Mater; 2022 Sep; 438():129413. PubMed ID: 35816804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactivity of unactivated peroxymonosulfate with nitrogenous compounds.
    Nihemaiti M; Permala RR; Croué JP
    Water Res; 2020 Feb; 169():115221. PubMed ID: 31678752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MoS
    Gao YQ; Rao YY; Ning H; Yin DQ; Gao NY
    RSC Adv; 2021 Oct; 11(52):33149-33159. PubMed ID: 35493592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.
    Lin KA; Chen BJ
    Chemosphere; 2017 Jan; 166():146-156. PubMed ID: 27693875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: dispersed versus resin-supported zero-valent iron.
    Du Q; Zhou L; Zhang S; Pan B; Lv L; Zhang W; Zhang Q
    J Colloid Interface Sci; 2014 Aug; 428():179-84. PubMed ID: 24910051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anoxic degradation of chlorpyrifos by zerovalent monometallic and bimetallic particles in solution.
    Graça CAL; Mendes MA; Teixeira ACSC; Velosa AC
    Chemosphere; 2020 Apr; 244():125461. PubMed ID: 31816552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel zero-valent Co-Fe encapsulated in nitrogen-doped porous carbon nanocomposites derived from CoFe
    Zhou Y; Zhang Y; Hu X
    J Colloid Interface Sci; 2020 Sep; 575():206-219. PubMed ID: 32361237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.
    Xiong Z; Lai B; Yang P; Zhou Y; Wang J; Fang S
    J Hazard Mater; 2015 Oct; 297():261-8. PubMed ID: 25978189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.