BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32152357)

  • 1. Preparation of macroporous transition metal hydroxide monoliths via a sol-gel process accompanied by phase separation.
    Liu F; Feng D; Yang H; Guo X
    Sci Rep; 2020 Mar; 10(1):4331. PubMed ID: 32152357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation.
    Guo X; Song J; Lvlin Y; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2015 Apr; 16(2):025003. PubMed ID: 27877772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation.
    Lu X; Kanamori K; Nakanishi K
    Natl Sci Rev; 2020 Nov; 7(11):1656-1666. PubMed ID: 34691501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a hierarchically porous AlPO
    Li W; Zhu Y; Guo X; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2013 Aug; 14(4):045007. PubMed ID: 27877600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework.
    Guo X; Wang R; Yu H; Zhu Y; Nakanishi K; Kanamori K; Yang H
    Dalton Trans; 2015 Aug; 44(30):13592-601. PubMed ID: 26140683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Li2FeSiO4-carbon monoliths with controlled macropores: effects of pore properties on electrode performance.
    Hasegawa G; Sannohe M; Ishihara Y; Kanamori K; Nakanishi K; Abe T
    Phys Chem Chem Phys; 2013 Jun; 15(22):8736-43. PubMed ID: 23628943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity.
    Stoeckel D; Kübel C; Loeh MO; Smarsly BM; Tallarek U
    Langmuir; 2015 Jul; 31(26):7391-400. PubMed ID: 25654337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications.
    Abi Jaoudé M; Randon J; Bordes C; Lanteri P; Bois L
    Anal Bioanal Chem; 2012 May; 403(4):1145-55. PubMed ID: 22286081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.
    Konishi J; Fujita K; Nakanishi K; Hirao K; Morisato K; Miyazaki S; Ohira M
    J Chromatogr A; 2009 Oct; 1216(44):7375-83. PubMed ID: 19580973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of anisotropic porous silica monoliths by means of magnetically controlled phase separation in sol-gel processes.
    Furlan M; Lattuada M
    Langmuir; 2012 Aug; 28(34):12655-62. PubMed ID: 22849804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, Reduction, and Electrical Properties of Macroporous Monolithic Mayenite Electrides with High Porosity.
    Wang R; Yang H; Lu Y; Kanamori K; Nakanishi K; Guo X
    ACS Omega; 2017 Nov; 2(11):8148-8155. PubMed ID: 31457360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonate hydroxyapatite gel monolith formation and drying.
    Barralet JE; Best SM; Bonfield W
    Biomed Mater Eng; 1996; 6(2):101-12. PubMed ID: 8761520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal.
    Su H; Chong Y; Wang J; Long D; Qiao W; Ling L
    J Colloid Interface Sci; 2018 Jan; 510():77-85. PubMed ID: 28942067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres.
    Marques AC; Vale M
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective preparation of macroporous monoliths of conductive titanium oxides Ti(n)O(2n-1) (n = 2, 3, 4, 6).
    Kitada A; Hasegawa G; Kobayashi Y; Kanamori K; Nakanishi K; Kageyama H
    J Am Chem Soc; 2012 Jul; 134(26):10894-8. PubMed ID: 22686579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent Tailoring of Macropore and Mesopore Space in TiO
    Beck G; Sieland M; Beleites JF; Marschall R; Smarsly BM
    Inorg Chem; 2019 Feb; 58(4):2599-2609. PubMed ID: 30681841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Metal-Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures.
    Hara Y; Kanamori K; Nakanishi K
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):19047-19053. PubMed ID: 31523915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ SAXS observation on metal-salt-derived alumina sol-gel system accompanied by phase separation.
    Tokudome Y; Nakanishi K; Kanamori K; Hanada T
    J Colloid Interface Sci; 2010 Dec; 352(2):303-8. PubMed ID: 20822775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a Crystalline and Transparent Aerogel Composed of Ni-Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel.
    Takemoto M; Tokudome Y; Noguchi D; Ueoka R; Kanamori K; Okada K; Murata H; Nakahira A; Takahashi M
    Langmuir; 2020 Aug; 36(32):9436-9442. PubMed ID: 32683867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template.
    Yin J; Yang G; Wang H; Chen Y
    Chem Commun (Camb); 2007 Nov; (44):4614-6. PubMed ID: 17989809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.