These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32152422)
21. Structural and biochemical characterization of active sites mutant in human inorganic pyrophosphatase. Zheng S; Zheng C; Chen S; Guo J; Huang L; Huang Z; Xu S; Wu Y; Li S; Lin J; You Y; Hu F Biochim Biophys Acta Gen Subj; 2024 May; 1868(5):130594. PubMed ID: 38428647 [TBL] [Abstract][Full Text] [Related]
22. Backbone resonance assignment and dynamics of 110 kDa hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis. Romanov RS; Mariasina SS; Efimov SV; Klochkov VV; Rodina EV; Polshakov VI Biomol NMR Assign; 2020 Oct; 14(2):281-287. PubMed ID: 32562252 [TBL] [Abstract][Full Text] [Related]
23. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum. Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429 [TBL] [Abstract][Full Text] [Related]
24. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964 [TBL] [Abstract][Full Text] [Related]
25. Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer. Huang YT; Liu TH; Chen YW; Lee CH; Chen HH; Huang TW; Hsu SH; Lin SM; Pan YJ; Lee CH; Hsu IC; Tseng FG; Fu CC; Pan RL J Biol Chem; 2010 Jul; 285(31):23655-64. PubMed ID: 20511234 [TBL] [Abstract][Full Text] [Related]
26. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255 [TBL] [Abstract][Full Text] [Related]
27. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. Huang YT; Liu TH; Lin SM; Chen YW; Pan YJ; Lee CH; Sun YJ; Tseng FG; Pan RL J Biol Chem; 2013 Jul; 288(27):19312-20. PubMed ID: 23720778 [TBL] [Abstract][Full Text] [Related]
28. Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution. Rantanen MK; Lehtiö L; Rajagopal L; Rubens CE; Goldman A Acta Crystallogr D Biol Crystallogr; 2007 Jun; 63(Pt 6):738-43. PubMed ID: 17505113 [TBL] [Abstract][Full Text] [Related]
29. Structural basis for the reversibility of proton pyrophosphatase. Regmi KC; Pizzio GA; Gaxiola RA Plant Signal Behav; 2016 Oct; 11(10):e1231294. PubMed ID: 27611445 [TBL] [Abstract][Full Text] [Related]
30. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity. Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234 [TBL] [Abstract][Full Text] [Related]
31. Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase. Yang SJ; Jiang SS; Hsiao YY; Van RC; Pan YJ; Pan RL Biochim Biophys Acta; 2004 Jun; 1656(2-3):88-95. PubMed ID: 15178470 [TBL] [Abstract][Full Text] [Related]
32. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani. Chen YW; Lee CH; Huang YT; Pan YJ; Lin SM; Lo YY; Lee CH; Huang LK; Huang YF; Hsu YD; Pan RL J Bioenerg Biomembr; 2014 Apr; 46(2):127-34. PubMed ID: 24121937 [TBL] [Abstract][Full Text] [Related]
33. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase. Kankare J; Salminen T; Lahti R; Cooperman BS; Baykov AA; Goldman A Biochemistry; 1996 Apr; 35(15):4670-7. PubMed ID: 8664256 [TBL] [Abstract][Full Text] [Related]
34. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541 [TBL] [Abstract][Full Text] [Related]
35. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
36. Ligand binding sites in Escherichia coli inorganic pyrophosphatase: effects of active site mutations. Hyytiä T; Halonen P; Salminen A; Goldman A; Lahti R; Cooperman BS Biochemistry; 2001 Apr; 40(15):4645-53. PubMed ID: 11294631 [TBL] [Abstract][Full Text] [Related]
37. Crystal structure of Streptococcus mutans pyrophosphatase: a new fold for an old mechanism. Merckel MC; Fabrichniy IP; Salminen A; Kalkkinen N; Baykov AA; Lahti R; Goldman A Structure; 2001 Apr; 9(4):289-97. PubMed ID: 11525166 [TBL] [Abstract][Full Text] [Related]
39. Changes in E. coli inorganic pyrophosphatase structure induced by binding of metal activators. Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Harutyunyan EH Biochemistry (Mosc); 1998 May; 63(5):592-9. PubMed ID: 9632898 [TBL] [Abstract][Full Text] [Related]
40. Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure. Asaoka M; Segami S; Maeshima M J Biochem; 2014 Dec; 156(6):333-44. PubMed ID: 25070903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]