These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32152795)

  • 1. An adaptive finite element model for steerable needles.
    Terzano M; Dini D; Rodriguez Y Baena F; Spagnoli A; Oldfield M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1809-1825. PubMed ID: 32152795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles.
    Misra S; Reed KB; Douglas AS; Ramesh KT; Okamura AM
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2008 Oct; ():224-231. PubMed ID: 22020139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a dynamic model for bevel-tip flexible needle insertion into soft tissues.
    Haddadi A; Hashtrudi-Zaad K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7478-82. PubMed ID: 22256068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of a novel steerable probe with a programmable bevel tip inspired by nature.
    Frasson L; Ferroni F; Ko SY; Dogangil G; Rodriguez Y Baena F
    J Robot Surg; 2012 Sep; 6(3):189-97. PubMed ID: 27638271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of biopsy bevel-tipped needle insertion into soft-gel.
    Jushiddi MG; Mulvihill JJE; Chovan D; Mani A; Shanahan C; Silien C; Md Tofail SA; Tiernan P
    Comput Biol Med; 2019 Aug; 111():103337. PubMed ID: 31279981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.
    Datla NV; Konh B; Honarvar M; Podder TK; Dicker AP; Yu Y; Hutapea P
    Med Eng Phys; 2014 Mar; 36(3):285-93. PubMed ID: 24296105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach.
    Oldfield M; Dini D; Giordano G; Rodriguez Y Baena F
    Comput Methods Biomech Biomed Engin; 2013; 16(5):530-43. PubMed ID: 22229447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel curvature-controllable steerable needle for percutaneous intervention.
    Bui VK; Park S; Park JO; Ko SY
    Proc Inst Mech Eng H; 2016 Aug; 230(8):727-38. PubMed ID: 27206444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip Design for Safety of Steerable Needles for Robot-Controlled Brain Insertion.
    Lehocky CA; Fellows-Mayle W; Engh JA; Riviere CN
    Robot Surg; 2017; 4():107-114. PubMed ID: 29170740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-element modelling of interactions of needle with tympanic membrane and middle ear.
    Mohammadi H; Ebrahimian A; Maftoon N
    Hear Res; 2024 Oct; 452():109092. PubMed ID: 39126764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications.
    Babaiasl M; Boccelli S; Chen Y; Yang F; Ding JL; Swensen JP
    Med Biol Eng Comput; 2020 Aug; 58(8):1845-1872. PubMed ID: 32514828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bevel angle study of flexible hollow needle insertion into biological mimetic soft-gel: Simulation and experimental validation.
    Jushiddi MG; Cahalane RM; Byrne M; Mani A; Silien C; Tofail SAM; Mulvihill JJE; Tiernan P
    J Mech Behav Biomed Mater; 2020 Nov; 111():103896. PubMed ID: 32791488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on tissue-needle interaction and path planning models for bevel tip type flexible needle minimal intervention.
    Muzzammil HM; Zhang YD; Ejaz H; Yuan Q; Muddassir M
    Math Biosci Eng; 2024 Jan; 21(1):523-561. PubMed ID: 38303433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path Replanning for Orientation-Constrained Needle Steering.
    Pinzi M; Watts T; Secoli R; Galvan S; Baena FRY
    IEEE Trans Biomed Eng; 2021 May; 68(5):1459-1466. PubMed ID: 33606622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1917-1928. PubMed ID: 29990280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Robotic Needle Steering in ex vivo Tissue.
    Majewicz A; Wedlick TR; Reed KB; Okamura AM
    IEEE Int Conf Robot Autom; 2010 May; 2010():2068-2073. PubMed ID: 21339851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for Improving the Curvature of Steerable Needles in Biological Tissue.
    Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method to Reduce Target Motion Through Needle-Tissue Interactions.
    Oldfield MJ; Leibinger A; Seah TE; Rodriguez Y Baena F
    Ann Biomed Eng; 2015 Nov; 43(11):2794-803. PubMed ID: 25943896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of Flexible Needles Robotically Steered through Soft Tissue.
    Misra S; Reed KB; Schafer BW; Ramesh KT; Okamura AM
    Int J Rob Res; 2010 Nov; 29(13):1640-1660. PubMed ID: 21170164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.