These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 32152844)
1. Modeling oxygen and organic matter concentration in the intensive rainbow trout (Oncorhynchus mykiss) rearing system. Galezan FH; Bayati MR; Safari O; Rohani A Environ Monit Assess; 2020 Mar; 192(4):223. PubMed ID: 32152844 [TBL] [Abstract][Full Text] [Related]
2. An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: A novel application of artificial neural network based simulation in MATLAB. Zahmatkesh S; Rezakhani Y; Arabi A; Hasan M; Ahmad Z; Wang C; Sillanpää M; Al-Bahrani M; Ghodrati I Chemosphere; 2022 Dec; 308(Pt 2):136304. PubMed ID: 36096310 [TBL] [Abstract][Full Text] [Related]
3. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea. Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Zare Abyaneh H J Environ Health Sci Eng; 2014 Jan; 12(1):40. PubMed ID: 24456676 [TBL] [Abstract][Full Text] [Related]
5. Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Yonar ME; Mişe Yonar S; İspir Ü; Ural MŞ Fish Shellfish Immunol; 2019 Jun; 89():83-90. PubMed ID: 30898618 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks. Darajeh N; Idris A; Fard Masoumi HR; Nourani A; Truong P; Rezania S Int J Phytoremediation; 2017 May; 19(5):413-424. PubMed ID: 27748626 [TBL] [Abstract][Full Text] [Related]
7. Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. Ghritlahre HK; Prasad RK J Environ Manage; 2018 Oct; 223():566-575. PubMed ID: 29975883 [TBL] [Abstract][Full Text] [Related]
8. Prediction of effluent quality in ICEAS-sequential batch reactor using feedforward artificial neural network. Khatri N; Khatri KK; Sharma A Water Sci Technol; 2019 Jul; 80(2):213-222. PubMed ID: 31537757 [TBL] [Abstract][Full Text] [Related]
9. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Najah A; El-Shafie A; Karim OA; El-Shafie AH Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111 [TBL] [Abstract][Full Text] [Related]
10. Application of an artificial neural network for the improvement of agricultural drainage water quality using a submerged biofilter. Abdel Daiem MM; Hatata A; El-Gohary EH; Abd-Elhamid HF; Said N Environ Sci Pollut Res Int; 2021 Feb; 28(5):5854-5866. PubMed ID: 32978738 [TBL] [Abstract][Full Text] [Related]
11. Combined effects of diets and temperature on mitochondrial function, growth and nutrient efficiency in rainbow trout (Oncorhynchus mykiss). Eya JC; Yossa R; Perera D; Okubajo O; Gannam A Comp Biochem Physiol B Biochem Mol Biol; 2017 Oct; 212():1-11. PubMed ID: 28687361 [TBL] [Abstract][Full Text] [Related]
12. Modelling biochemical oxygen demand in a large inland aquaculture zone of India: Implications and insights. Nagaraju TV; Sri Bala G; Bonthu S; Mantena S Sci Total Environ; 2024 Jan; 906():167386. PubMed ID: 37769733 [TBL] [Abstract][Full Text] [Related]
13. Toxic effects of orimulsion on rainbow trout Oncorhynchus mykiss. Svecevicius G; Kazlauskiene N; Vosyliene MZ Environ Sci Pollut Res Int; 2003; 10(5):281-3. PubMed ID: 14535640 [TBL] [Abstract][Full Text] [Related]
14. Near-field loading dynamics of total phosphorus and short-term water quality variations at a rainbow trout cage farm in Lake Huron. Reid GK; McMillan I; Moccia RD J Environ Monit; 2006 Sep; 8(9):947-54. PubMed ID: 16951755 [TBL] [Abstract][Full Text] [Related]
15. Modelling the biological treatment process aeration efficiency: application of the artificial neural network algorithm. Muloiwa M; Dinka M; Nyende-Byakika S Water Sci Technol; 2022 Dec; 86(11):2912-2927. PubMed ID: 36515196 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural networks and adaptive neuro-fuzzy inference systems for prediction of soil respiration in forested areas southern Brazil. Vicentini ME; da Silva PA; Canteral KFF; De Lucena WB; de Moraes MLT; Montanari R; Filho MCMT; Peruzzi NJ; La Scala N; De Souza Rolim G; Panosso AR Environ Monit Assess; 2023 Aug; 195(9):1074. PubMed ID: 37615714 [TBL] [Abstract][Full Text] [Related]
17. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China. Zhou C; Zhang C; Tian D; Wang K; Huang M; Liu Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):91-98. PubMed ID: 29083952 [TBL] [Abstract][Full Text] [Related]
18. Environmental performance of rainbow trout (Oncorhynchus mykiss) production in Galicia-Spain: A Life Cycle Assessment approach. Sanchez-Matos J; Regueiro L; González-García S; Vázquez-Rowe I Sci Total Environ; 2023 Jan; 856(Pt 2):159049. PubMed ID: 36167134 [TBL] [Abstract][Full Text] [Related]
19. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach. Zaqoot HA; Ansari AK; Unar MA; Khan SH Water Sci Technol; 2009; 60(12):3051-9. PubMed ID: 19955628 [TBL] [Abstract][Full Text] [Related]
20. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Setshedi KJ; Mutingwende N; Ngqwala NP Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34069195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]