These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32152980)

  • 1. The Molecular Dynamics Simulation of Peptides on Gold Nanosurfaces.
    Roccatano D
    Methods Mol Biol; 2020; 2118():177-197. PubMed ID: 32152980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of collagen like peptides with gold nanosurfaces: a molecular dynamics investigation.
    Gopalakrishnan R; Azhagiya Singam ER; Vijaya Sundar J; Subramanian V
    Phys Chem Chem Phys; 2015 Feb; 17(7):5172-86. PubMed ID: 25600994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex.
    Dutta S; Corni S; Brancolini G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How a short pore forming peptide spans the lipid membrane.
    Vestergaard M; Christensen M; Hansen SK; Grønvall D; Kjølbye LR; Vosegaard T; Schiøtt B
    Biointerphases; 2017 May; 12(2):02D405. PubMed ID: 28476091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of homopolypeptides on gold investigated using atomistic molecular dynamics.
    Vila Verde A; Beltramo PJ; Maranas JK
    Langmuir; 2011 May; 27(10):5918-26. PubMed ID: 21488613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations of Protein-Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors.
    Hadden JA; Perilla JR
    Methods Mol Biol; 2018; 1762():245-270. PubMed ID: 29594776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Findings on the interaction of the antimicrobial peptide cecropin-melittin with a gold surface from molecular dynamics studies.
    Ferreira AF; Rai A; Ferreira L; Simões PN
    Eur Biophys J; 2017 Apr; 46(3):247-256. PubMed ID: 27469622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study.
    Ramezani F; Habibi M; Rafii-Tabar H; Amanlou M
    Daru; 2015 Jan; 23(1):9. PubMed ID: 25630230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of solution behavior of magainin 2 monomers.
    Petkov P; Marinova R; Kochev V; Ilieva N; Lilkova E; Litov L
    J Biomol Struct Dyn; 2019 Mar; 37(5):1231-1240. PubMed ID: 29557267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides.
    Tang M; Gandhi NS; Burrage K; Gu Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3701-3711. PubMed ID: 30361726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations.
    Land H; Humble MS
    Methods Mol Biol; 2018; 1685():43-67. PubMed ID: 29086303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation.
    Czajkowsky DM; Sun J; Shao Z
    Elife; 2015 Dec; 4():e08421. PubMed ID: 26652734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of peptides.
    Kuczera K
    Methods Mol Biol; 2015; 1268():15-41. PubMed ID: 25555719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.
    de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N
    Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?
    Šponer J; Krepl M; Banáš P; Kührová P; Zgarbová M; Jurečka P; Havrila M; Otyepka M
    Wiley Interdiscip Rev RNA; 2017 May; 8(3):. PubMed ID: 27863061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiGRO: a graphical user interface for protein-ligand molecular dynamics.
    Kagami LP; das Neves GM; da Silva AWS; Caceres RA; Kawano DF; Eifler-Lima VL
    J Mol Model; 2017 Oct; 23(11):304. PubMed ID: 28980073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
    Raval A; Piana S; Eastwood MP; Dror RO; Shaw DE
    Proteins; 2012 Aug; 80(8):2071-9. PubMed ID: 22513870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.