These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32153131)

  • 1. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source.
    Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N
    ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability.
    Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N
    Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source.
    Feng J; Gu X; Xue Y; Han Y; Lu X
    Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems.
    Yu Z; Lu X; Xiong J; Ji N
    ChemSusChem; 2019 Sep; 12(17):3915-3930. PubMed ID: 31270936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Asymmetric Transfer Hydrogenation of Biomass-Derived Levulinic Acid to Optically Pure γ-Valerolactone Using a Ruthenium Catalyst.
    Shende VS; Raut AB; Raghav P; Kelkar AA; Bhanage BM
    ACS Omega; 2019 Nov; 4(21):19491-19498. PubMed ID: 31763574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H
    Hijazi A; Khalaf N; Kwapinski W; Leahy JJ
    RSC Adv; 2022 May; 12(22):13673-13694. PubMed ID: 35530384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source.
    Jędrzejczyk M; Soszka E; Goscianska J; Kozanecki M; Grams J; Ruppert AM
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water.
    Xu Y; Liang Y; Guo H; Qi X
    Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid.
    García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex.
    Yi Y; Liu H; Xiao LP; Wang B; Song G
    ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid.
    Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K
    Front Chem; 2021; 9():725175. PubMed ID: 34712649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the hydrothermal stability of zeolite Y by La
    Vu HT; Goepel M; Gläser R
    RSC Adv; 2021 Jan; 11(10):5568-5579. PubMed ID: 35423095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.